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Abstract. – We expose analogies between turbulence in a fluid heated from below (Rayleigh-
Bénard (RB) flow) and shear flows: The unifying theory for RB flow (S. Grossmann and D.
Lohse, J. Fluid Mech. 407, 27-56 (2000) and subsequent refinements) can be extended to
the flow between rotating cylinders (Taylor-Couette flow) and pipe flow. We identify wind
dissipation rates and momentum fluxes that are analogous to the dissipation rate and heat
flux in RB flow. The proposed unifying description for the three cases is consistent with the
experimental data.

Net transport of heat, momentum, and kinetic energy in turbulent flows arises in many
practical situations. The determination of its magnitude poses a formidable challenge to our
understanding of the dynamics of turbulence. In the absence of an exact theory, various
approximations, prominent among them the Prandtl mixing layer model, have been proposed
for its modelling. Where no absolute numbers could be obtained, theory has aimed to predict
at least the scaling with Reynolds number or other system parameters. In the case of heat
transport in a layer of fluid heated from below considerable insights have been gained from
an ansatz that combines two exact equations for the heat current and the energy dissipation
rate with scaling assumptions for the behaviour in plume dominated boundary layers and
fluctuation dominated bulk regions [1]. In this way the complete range of responses of a
fluid to a temperature gradient can be determined. Specifically, with the Prandtl number
characterizing the fluid properties and the Rayleigh number as the external control parameter,
the response in the form of a fluid flow, measured by a wind (or transverse) velocity Rew, and
a thermal transport, described by the Nusselt number Nuθ, can be predicted and different
regions in the Nuθ(Ra, Pr) and Rew(Ra, Pr) plane can be identified. A considerable body of
experimental data is in very good agreement with the predictions and has confirmed the basic
scaling assumptions of the theory. The quality of the data has improved to the point that
influences from the side walls [2] and the top and bottom plates [3–5], due to finite conductivity
of the solid boundary materials, or deviations from the Boussinesq approximation [6] can be
identified.
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Fig. 1 – Comparison between (a) Rayleigh-Bénard, (b) Taylor-Couette, and (c) pipe flow, arranged
so as to highlight the similarities of the flows. The lengths scale is set by the gap width d in RB
and TC flow and the radius a in pipe flow. In the RB case we show the lower warm and upper
cold plates, and the mean temperature profile. The deviation from the linear profile is due to heat
transport by a transverse velocity field (the wind) that has components in the direction of the thermal
gradient and, by Navier-Stokes interaction, also in the perpendicular directions. In the TC case the
corresponding profile is one of angular velocity. Deviations from the (slighly curved) laminar profile
are due to angular velocity transport by a velocity in radial direction (“Taylor vortices”) and, again
by Navier-Stokes interaction, in axial and azimuthal directions. For pipe flow, we show the mean axial
velocity, which is again deformed by wind contributions in the radial and consequently in azimuthal
and axial directions. A fourth flow of similar geometry and transverse transport would be pressure
driven Poiseuille flow between flat plates.

In the case of shear flows, in particular in confined geometries like pipe and Taylor-Couette
(TC) flows, the theory is less well developed. Extensions of the Rayleigh-Bénard reasoning
to Taylor-Couette and pipe flow have been proposed in [7] and in [8]. However, in both
references the analogy was incomplete and additional fit parameters or approximations had
to be introduced. This state of affairs is particularly irritating for TC flow, where there is a
one-to-one relation with RB flow in its linear stability properties, and where various analogies
for the fully nonlinear case have been discussed in the literature [8–11]. However, none of these
analogies is exact in the full 3-dim nonlinear case. Our aim here is to remedy this situation and
to present pairs of quantities in the fully nonlinear Rayleigh-Bénard, Taylor-Couette, and pipe
flow geometries that are dynamically related in a one-to-one fashion. This translation opens
up new avenues for the analysis of shear flows, suggests scaling behaviour in close analogy to
what has been confirmed in RB flow, and raises several questions about the dynamics of shear
flows.

In order to outline the similarities between the three flows, we begin by recalling the
essential steps of the analysis of RB flow. For the time being we neglect various details, like
side wall influences etc, and focus on the dominant behaviour. As the analysis of the existing
data for TC flow given below will show, their precision is as yet insufficient to clearly identify
and study such corrections.

Rayleigh-Bénard flow: In the case of a fluid layer heated from below the ’laminar’ state
is one without fluid flow, u = 0, and a linear temperature drop from bottom to top plate.
In this state there is only molecular transport of heat. The flow that sets in once a critical
temperature difference is exceeded, the ’wind’, increases the heat flux by advection of heat
(Fig. 1). The total heat flux can be obtained from the equation for the temperature field
by averaging over planes A parallel to the bottom and top plates (and time t). With z the
coordinate normal to the plates, we find the expression for the conserved, z-independent heat
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flux

Jθ = 〈uzθ〉A,t − κ
∂〈θ〉A,t

∂z
= NuθJθ,lam . (1)

The last equality defines the Nusselt number Nuθ as the ratio of the actual heat current to the
laminar value Jθ,lam = κΔ/d, where κ is the thermal conductivity, Δ the imposed temperature
difference, and d the height of the box. The kinetic energy in the wind is dissipated by fluid
viscosity ν. Multiplying the Navier-Stokes equations with the velocity u and integrating over
the volume, the energy balance between dissipation and input reads

εw = ν3d−4Pr−2Ra(Nuθ − 1) . (2)

Here, Pr = ν/κ is the Prandtl number and Ra = αpgd3Δ/(κν) the Rayleigh number. These
two relations, (1) and (2), show the intimate relation between the forcing by an externally
applied profile in one of the fields, here the temperature field, and the wind: there is only
diffusive transport if there is no wind, and there can be no wind unless there is an increased
energy uptake Nuθ > 1.

In case of RB flow two dissipation rates can be calculated: a dissipation rate εw for
the velocity field from the u-equation, and a thermal dissipation rate εθ = κ〈grad2θ〉 from
the temperature equation. However, εθ carries the same information as the thermal current
Jθ = NuκΔ/d, since εθ = κΔ2d−2Nu. In TC and pipe flow one again can derive a wind
dissipation rate εw from the Navier-Stokes equation for the velocity field vector u, but one
does not succeed in identifying another dissipation rate for the one velocity component which
has changed its profile because of the externally applied boundary conditions. However, the
presence of a profile already in the laminar state shows that there is a transverse transport
of this quantity and the associated conserved current can be generalized also to the turbulent
situation. Thus, we will built our generalization to other flows on the pair formed by wind
dissipation εw and current J .

Taylor-Couette flow: The flow between two independently rotating cylinders (Fig. 1b) has
several parameters, including the gap width d = r2 − r1, the radius ratio η = r1/r2, and the
angular velocities ω1 and ω2 of the inner and outer cylinders. In the laminar case the velocity
field is azimuthal, u = rω(r)eφ; its shape is close to a linear interpolation between the angular
velocities in the small gap limit η → 1. This suggests to consider the angular velocity and
the radial direction as corresponding to the temperature profile and the normal direction in
the RB situation. Taking the φ-component of the Navier-Stokes equation and averaging over
cylinders at fixed r between r1, r2, we find that the quantity

Jω = r3 (〈urω〉A,t − ν∂r〈ω〉A,t) (3)

is independent of the radius and hence conserved, also in the turbulent case. It corresponds to
the heat current in the RB case. The appearance of the angular velocity rather than angular
momentum or azimuthal velocity is unexpected, but dictated by the viscous part: The Navier-
Stokes equation implies that it is only for this combination that the viscous part is the radial
derivative of a mean profile. In laminar TC flow only the second term contributes,

Jω,lam = νr2
1r

2
2r

−1
a d−1(ω1 − ω2) . (4)

ra = (r1 + r2)/2 denotes the average radius and d = R2 − r1 the gap width. Deviations from
the laminar profile require the presence of a radial velocity contribution ur, which plays the
role of the wind in the RB case. Since the reference laminar flow already has a shear profile
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that dissipates energy, we consider the difference in dissipation between the case with wind
and the case without,

εw = ε − εlam = r−1
a d−1(ω1 − ω2)Jω,lam(Nuω − 1) . (5)

The fluid is driven by rotating the cylinder walls with angular velocities ω1 and ω2, respectively,
and it responds with an angular velocity transport Nuω = Jω/Jω,lam and by setting up a
wind (“Taylor vortices”) with amplitude Uw that can be characterized by a Reynolds number
Rew = Uwd/ν. In analogy to RB flow, the aim then is to predict Nuω and Rew and their
dependencies on the angular velocities ω1, and ω2, the radius ratio η, the aspect ratio, or
other parameters.

Pipe flow: Laminar pressure driven flow with mean velocity U and Reynolds number
Re = U2a/ν down a pipe of radius a shows a parabolic profile of the axial velocity uz

(Fig. 1c). In the turbulent case this profile is modified by a radial flow ur, which the Navier-
Stokes equation couples to an azimuthal and an additional axial velocity field. Averaging the
Navier-Stokes equation for the axial velocity uz over axial cylinders r = const we can identify

Juz =
1
r

(〈uruz〉A(=),t − ν∂r〈uz〉A(=),t

)
(6)

as the conserved transverse uz-flux. The laminar flux is

Juz,lam = 8νa−2U = 4ν2a−3Re . (7)

Beyond laminarity there is a wind of amplitude Uw whose radial component ur enhances the
uz-transport by convection. Near the threshold for the transition to turbulence this wind
is dominated by downstream vortices similar to the Taylor-vortices in TC flow [12, 13]. Its
dissipation rate can be evaluated as

εw = εu − εlam = UJuz ,lam(Nuuz − 1) , (8)

with the nondimensionalized transverse flux “Nusselt” number Nuuz = Juz/Juz,lam.
The analogy between the three examples is evident: in all cases we have a conserved

current J and a dissipation rate for the wind εw. The link between each J and the respective
εw is an intimate one, in that one cannot have an increase in the current without a non-zero
dissipation rate of the wind and hence, in the statistically stationary case, in the power input.
The expressions for the fluxes J and the wind dissipation rates εw as well as the relations (2),
(5), and (8) between them are exact consequences of the Navier-Stokes equations.

Scaling relations: Proceeding as in the case of RB thermal convection [1], we model – e.g.
for TC flow – the energy dissipation rate of the wind as the superposition of the dissipation
in the boundary layer plus that in the bulk,

2Re2(Nu − 1) =
εw

ν3d−4
= c1Re5/2

w + c2Re3
w . (9)

The flux consists of a boundary layer and plume (hairpin) contribution plus a bulk or fluctu-
ation contribution

Nu = c3

√
Rewg + c4Rewg . (10)

The switching function g(s) depends on the ratio s =
√

Rew/Nu ∝ λ/δ of the thickness λ
of the profile forming quantity (temperature, angular velocity or axial velocity) and that of
the wind boundary layer δ. It accounts for the fact that the velocity that determines the
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Fig. 2 – Friction factor vs. Reynolds number for TC flow (left) and pipe flow (right). For TC-flow
the data are from [17] and for pipe flow from [19]. The top frame shows the friction factors for the
data (red symbols), the fit based on eqs. (9,10, 11) (full blue line) and the Prandtl-von Karman law
(dash-dotted green line). The lower frames show the relative errors.

momentum transport has to be adjusted (a detailed discussion in the context of RB flows is
given in Ref. 1c). If the boundary layer for the wind is thinner than the one for the driving
field, δ < λ, then the full velocity has to be taken, g(s) = 1. If the boundary layer for the
wind is wider, than only the gradient that can be built up over the width λ matters, g(s) = s.
Most experiments on RB flows are typically in either one or the other regime or switch quickly
between them [1]. However, guided by the observation in [7] that even for the largest Reynolds
numbers accessible no pure scaling regime can be found, we adopt for the switching function
– slightly different from the one used in ref. 1c – the form

g(s) = s2+γ/(c5 + s) . (11)

This definition completes our modelling; equations (9), (10), and (11) together now form
a nonlinear, implicit system for the wind Reynolds number Rew and the Nusselt number Nu.

Without a point of reference for the wind Reynolds number, the four coefficients c1, c2,
c3, and c4 and therefore also c5 can only be determined up to factor. Keeping c2 fixed, we
can determine the other coefficients and the exponent by fitting to existing transport data,
for TC flow to the torque measurements of [14–18], and for pipe flow to the friction factors
as function of Re documented in [19]. Once the coefficients are given, Nu is prescribed and
eqns (9,10) are solved numerically for the Reynolds numbers Re of the base flow and Rew of
the wind.

As Fig. 2 shows, the parameters c1 = 0.435, c2 = 29.3, c3 = 0.220, c4 = 0.0147, c5 =
1.99 · 10−6 and γ = 1.23 describe the overall behaviour of the friction factor f = Nu/Re vs.
Re for TC quite well. However, as in the case of RB flows, much more stringent information is
contained in plots of the relative error (lower left frame of Fig. 2). The relative error remains
within a few percent. For comparison we also show in both diagrams the results for a fit
suggested by the Prandtl-von Karman formula, 1/

√
f = A ln(Re

√
f) + B with adjustable

parameters A and B. The differences between the functions show up in the reduced plot:
while the error for the logarithmic profile seems to be bend systematically, the new fit is
constant within error bars.
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The behaviour for pipe data is similar. A fit to the data of Smits and Zagarola [19] gives the
parameters c1 = 0.000927, c2 = 0.003, c3 = 0.888, c4 = 0.0104, c5 = 0.00124, and γ = 1.131.
Fig. 2 shows the fit to the friction factor f = (R Δp/�)/(U2) (top right) and the relative error
(lower right). The deviations between the current model, the Prandtl-von-Karman model,
and the actual data are of about the same magnitude. Hence, within the uncertainty of the
data, both models give a consistent representation of the data. A more detailed discussion of
these data will be presented in forthcoming publications [20, 21].

Conclusions: The analysis shows how the thermal system and the shear flows can be
discussed on the same footing once the relevant flux and the dissipation rate of the transporting
’wind’ that contributes to the transverse flux are identified. Copying the boundary type and
bulk/fluctuation models for the scaling behavior from RB flow, the corresponding relations
for the fluxes and the energy dissipation rates can be obtained. An analysis of existing data
suggests that the transition between the different regions occur at different Reynolds numbers
for the flux and the energy dissipation rate, giving rise to at least four different regimes in
flow behavior which contribute with different weights. Therefore, also in TC and in pipe flow
no pure power law behavior for the fluxes or dissipation rates can be expected.

Financial support by DFG and FOM is gratefully acknowledged.
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