

iv.

Fobannis Bernoullii,
Inventa de Appropinquaxionibus promtis ad metiendas figuras per Motus Repentis confideration:m exhibitis.

Ex Epittola ad G. G.Leibnicium, Bafilea 15. Januar. 1707. in verticibus corjugatis $\mathbf{A}, \& \mathbf{P}$; ita nempe, ut in direCtum cadat axis major $A D$ cum minori $P Q$. Hoc in pofitu repat PMQN, hoc eft, moveatur motu parallefo

fuper immobili ABDE, feu ita, ut recta aliqua in mobili fumta velut $M N$, fibi fempermaneat Parallela; fervato interim femper contactu mutuo Ellipfum ; quo fiet, ut Ellipfis PMQN transferatur poft primum circumlationis quadrantem in fitum PI M $\mathrm{Q}_{1} \mathrm{~N}_{1}$, poft fecundum in $\mathrm{P}_{2} \mathrm{M}_{2} \mathrm{Q}_{2} \mathrm{~N}_{2}$, poft tertium in $\mathrm{P}_{3} \mathrm{M}_{3}$ Q $3 \mathrm{~N}_{3} \&$ port quartum redeat in primum PMQN atque in. terim vertices quatuor A, B, D, E, fuccesfive excipient fuosrefpeCtive conjugatos P, N, Q, M, Hoc motu, punctum quodvis in plano curvæ repentisex. gr. centrum O, de fctibet curvam $O G O$; HO_{2} IO : KO qux fecundum ea qux demonftravi in Actis Lipfienfibus, erit dupla curva Elliptica ABDE; adeoque illius dimidia O GHO2 eritæqualis propofitæ curvæ Ellipticx. Qud fi magis defideretur, ut integra defcripta Elliph data. fit æqualis, oporter prius affumere loco Ellipfis datæ aliam Elipfin fimilem, habentem axes conjugatos datorum dimidios, ita enim ambx Elipfes ABDE \& PMQN fimul fumptx xquant propofitam, hu cque adeo xqualis erit integra curva defcripta GHIK. Habemus ergo conftrutionem per motum continuum certe non minus Geometricam quam ea eft, qua per motum continuum de. fcribitur circulus. Quod fi petatur xquatio Algebraica prodeterminanda natura curvx, ejusque punctis inveniendis; etiam hoc preftabitur: Sit igitur Semiaxis major $A C=a$ femiaxis minor $\mathrm{BC}=b$, abfciffa indeterminata in Ellipfi $\mathrm{CR}=x$, adcoque applicata in eadem $R S=b \vee[a a-x x]: a=[$ brevitatis gratia) by: a, ex his fiant coordinatx CT, TF hac conditione, ut ablciffa CT fit $=x+\left(b^{3} x: \nabla\left(a^{4} y y+b^{4} x x\right)\right)$ \& ordinata TF $=b(y: a)+\left(a^{3} y: V\left(a^{2} y y+b^{4} x x\right)\right)$ dico, curvam hoc modo determinatam fore quxfitam, nempe illam ipfam qux per motum repentem puncti O fuit delineata Notetur hic obiter, puncta F \& S ita fibi refponderc, ut ubi O prorepfit in F, mul tuus Ellipfium contactus tunc femper celebretur in S, qua omnia demonttratu funt facilia.

Sed ad aliud nunc progredior, quod moneri alicujus operx pretium duco. Idque hoc eff, quod hec mea methodus uansformandi curvas, fimul doceat lineas Ellipticas, cxterasque Ellipticarum formam habentes, immo omnes curvas, comprehendcre intra limites pro arbitrio coaretandos duorum circulorum,
quorum unus majorem, alter minorem circumferentiam habeat quam data curva Elliptica, quod, quantum ufum h.betc posfit, ir praxi pater; licet tale quid nemo hucusque prxftiterir, nemo erim hucusque, fine ferie in terminis finitis \& geometricis, reduxit ex. gr. Ellipfin ordinariam intra duas circumferentias circulares, qux vel tantum centefima nedum millefima vel minori ad. hucfui parte altera alteram excedat. Hoc tamen eft, quod mea methodus feliciter exequitur.

Manifeftum eft, Curvam rependo defcriptam qua Ellipfixqualis, habere quatuor fua puncta cardinalia $\mathrm{O}, \mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}:$, xqualiter difantia a centro C , fed $\&$ demonftrare poffum, intra quatuor ifta puncta dari quatuor alia exacte intermedia $\mathrm{G}, \mathrm{H}, \mathrm{I}, \mathrm{K}$, itidem xqualiter diftantia à centro C , fed hoc difcrimine, quod it lorum intervalla à centro C fint minima, horum vero maxima; id quod curvx noftrx peculiarem hanc formam conciliat, ut nempe habeat quatuor gibbos valde quidem obtufos in G, H, I, K, alternatim protuberantes inter quatuor puneta cardinalia O, $\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{3}$, ubi curva quatuor velut compresfiones patitur: unde clarum eft, circulos duos ex centro C \& radiis CO, CG defriptos tangere curvam in quatuor punctis, \& unum quidem interne in $\mathrm{O}, \mathrm{O}, \mathrm{O}_{2}, \mathrm{O}_{3} . \&$ alterum externè in $\mathrm{G}, \mathrm{H}, \mathrm{I}, \mathrm{K}$, adeoque illum, tanquam infcriptum, minorem effe curva, hunc vero tanquam circumfrriptum, eâdem effe majorem. Eft autem radius infripti $\mathrm{CO}=\mathrm{CA}+\mathrm{CB}=a+b \&$ radium circumfcripti CG invenio $=A B \vee 2=\downarrow(2 a a+2 b b)$. Hinc ergo concludo, curyam OGO, $\mathrm{HO}_{2} \mathrm{IO}_{3} \mathrm{KO}$, hoc eft Ellipfin, cujus axes conjugati funt $4 a \& 4 b$ nempe duplo majores quam AD \& BE, effe majorem, quam ambitum-circuli cujus radius $a+b$, red minorem quam alium cujus radius $\mathcal{V}[2 a a+2 b b]$. Sumamus exem. phum hujus adje Atx figurx, ubi tali Ellipfi fum ufus, in qua Cemiaxes conjunti $\mathrm{AC} \& \mathrm{BC}$, funt ut $5 \& 4$; unde radius circuli minoris erit 9 vel $y 81, \&$ radius Circuli ma oris erit $\sqrt{ } 82$; affero igitur, longitudinem Ellipfeos, cujus femiaxes conjugati habent partes 10 \& 8 effe inter duas circumferentias circulares radiorum $V 81 \& \vee 82$ qui numeri fibi propiùs accedunt quam hirationates $9 \& 9$ I $\frac{1}{8}$ hoc eft, quam $162 \& 163$ ideoque minor à majori minus differt quam centefmafexagefima fecunda fui parte:

Hic occafione memini, me legere apud sonnullos Practicos quod pro comparandis perimeris Ellipfiam cum circularibus,jubeant defcribere circulum, radio aquali medio Arithmetico inter femiaxes conjugatos Ellipfis propofitx, cui aflerunt æqualem fore circuitum circuli ita defcripti. Revera hie circulus cujus circuitam haud dubie ex fola fenfurm xftimatione xqualem judicant linex Ellipticx, eft ipfistinus minor ex limitibus ì me hic asfignatis; Sed cunilii eum non nifi circiter rqualem retiment, incerti tamen, utrum rim accuratè fumendo fir jufto major aut minor ; ego rci veritatem fcentifice affecutus, oftendi, nonnthil jufto minorem effe, fed hæc de lim tibus primis Nunclimites fecundos multo quan primi profinquiorcs, $\&$ pofteatertios propinquiores adhuc, \& ita porro invenio, hac ratione. Finge fcilicet curvam noftram prima operatione inventam GHIK, fe ipfam obrepere, \& ita quidem, ut ab initio vertex gibbofitaris G tangat verticem compresfitatis \mathbf{O}, hoc eft, ut reeta longisfima $G C$ in curva mobili cadat in dire\&um cum re\&ta brerisfima (GC in curva immobili, plane ut factum eft in ipfa Eliipfi, ubi abinitio vertices conjugati A \& P (qui fane nihil aliud funt quam id quod ibi voco vertices gibbofiratis \& compresfitatis) (e tangunt, \& maxima minimaque diftantia AC, PO in directum ponuntur; Hoc intellecto, levi attentione adhibita percipitur, fecundo hoc motu reptitio, centrum C. curvæ mobilis, vel quodvis aliud ejus plani, defcribere curvam novam 0 c7i-gibbam, hoc eft,que habebit octo gibbos tantillulam prominentes alternatim inter totidem comprefluras, \& quorum vertices oato equaliter à centro diftabunt ; curvamque ipfam oetigibbam longitudine duplam effe curvx generantis quadrigibbx, uti hxc ipla dupla eft Ellipticx ex qua fuit generata. Artendas igitur admirabilem generationem harum curvarum : Ellipfis, qua reaple eft curva bi-gibbagenerat fui duplam quadrigibbam, quadrigibba producit duplam octigibbarn, \& hac fimili motu \& conditione etiam fui duplarn gignet fedeci-gibbam, $\&$ ita porro in infinitum. Sed quemadmodum curya quadrigibba propius ad rotunditatem circuli accedir quam bigibba feuEllipfis, ita quoque octigibba quàm quam drigibba, \& ita porro; ad inftar polygonorym, quæ, q̧uò plures habent angulos, eò magis circulo astimilantur, magno tamen difcri-
difcrimine ratione appropinquationis, nam per multiplicationem angulorum in Polygonis diu multamque procede dum eft,antequan perveniatur ad limites à Ludolpho van Cöllen conftitutos, fed curvx noftræ multigibbæ incridibili adeo celeritate ad circulum convergunt, ut, quemadmodum ex indic is qu!busdam mihi patet, inftitutis quinque operatio ibus, jam perveniatur ad lim tes Ludolphinis arctiores, reperta nempe curva tantum 64 gibborum; cùm Archimedi opus fuerit Polygono 96. angulorum, ad rationem fuam 9 ad 2 . dametti ad circumferentiąm inveniendam, qux tamen à vera multum adeo adhuc abludit. Veritatem hujus, aliquo modo percipies, ex limıtibus nunc tradendis quos mihi fuppeditavit curva octigil ba. Hos, ut inveniam, facile colligere eft,ex ante d'ctis, neceffi cffe, ut quæram illius curvæ diftantias à centro, maximam \& minimam; circulus enim radio maximi intervalli defcriptus tanget curvam exterius in odto punctis, \& erit per confequens longitudine major quam curva; Scd cir:ulus defcriptus radio minimi intervalli tanget curvam interius in osto punctis, adeo. que longitudine minor erit quam curva Qiantum ad diftantiam minimam, invenitur faciè, eft enim æqualis fuminæ diffantiarum minimx \& maximx curvx quadrigibbx genitricis quod per fe patet: fed quod fpcetat ad diftantiam maximam, demonftrare poffum, quod fit illa $x q u a l i s ~ p e r p e n d i u n ' a-~$ ri CZ bis fumptx, quæ demiteitur ex centro C in rectam VX , tangentem curvam quadrigibbam g-neratric $=m$ i. Y qux tangens fupponitur facere cum CO \& CG prolo igatis . basin trianguli isofcelis VCX: \& qu dem pari modo, dftantix minimx \& maximæ in fequentibus curvis multigibbis nveniuntur, femper enim diftantia minima xquatur diftantiis dabas, minimx \& maximæ fimul fumtis in præcedente multig:bba generatrice: \& diftant'a maxima xqualis eft altitudini bis fumtx trianguli isofcelis formati per prolongationem diftantiarum pracedentium maximx \& minimx, usq; ad tangentem tanquam bafin ejus triarguli. Ex hoc generali fundamento, finunc lubeat eruere limites fecundos, quos nempe fuppeditat curva octigibba, advertendam primo eft, cum octigibba fit dupla quadrigibbx, \& quadrigibba dupla bigibbx feu Ellipfeos; fore curvam octigibbam lon-
gitudine quadruplam Ellipfeos, adeoq; , ut illa fiat x qualis Elipfi propofitx, affumendam effe pro primâ generatrice aliam Eliipfin finitem, cujus axes conjugati fint fubquadrupli conjugarorum propofita. Sint igitur iterum (ut ante) axes conjugati Ellipfeos propofitx $4 a \& 4 b$, adeoque nunc $\mathrm{AD}=a \& \mathrm{BE}=b$ inveni pro fimilibus fecundis, nempe radium circuli curvx octigibbx infcripti $=a+b+\sqrt{ }(2 a a+2 b b), 2, \&$ radium circuli eidem circumfcripti $=\frac{1}{2}(2 a a+2 b b+(a a-b b)$ $\sqrt{2})+\frac{1}{2} \sqrt{2}(2 a a+2 b b-(a a-b b) \sqrt{2})$ vel quod tantundem ef $V\left(a a+b b+\frac{1}{2} \checkmark\left(2 a^{4}+12 a a b b+2 b^{4}\right)\right)$. Ut applicationem faciamus ad exemplum noftrum, ubi femiaxes conjirgati Ellipfis propofitx funt partium $10 \& 8$, hoc eft, ubi $a=\varsigma \&$ $6=4$; invenietur pro radio circuli minoris $9+\sqrt{82,: 2, \& \text { pro }}$ radio circuli majoris $V\left(41+\frac{1}{2} \sqrt{2} 656\right)$, qui numeri fibi masis appropinquant quam hi rationales $9 \frac{8}{289} \& 9 \frac{391}{14000}$ ercnim $9 \frac{8}{289}$ tantillulo minor quam $9+\sqrt{82,: 2, \& 9 \frac{399}{14009} \text { tancil- }}$ lulo major quam V ($\left.41+\frac{1}{2} \vee 6562\right]$. Atqui numeri $9 \frac{8}{280} \&$ $9 \frac{391}{1.4000}$ paulo adhuc propius accedunt ad rationem xqualitatis quam hinumeri integri 36562 \& 36563 ; ergo, à potio ri, ratio inter limites inventos $9+\sqrt{ } 82,: 2, \& \forall\left(4^{\bar{i}}+\frac{1}{2} \bar{V}\right.$ 6562) magis convergit ad rationem xqualitatis, quam qux eft inter 36562 \& 36563 . Determinavi igitur hac fecunda operatione, duas circumferentias circuaares, unam propofitâEllipfi majorem; alteram eâdem Ellipfi minorem, qux tamen circumferentix tam parum ab xqualitate recedunt, ut in plusquam triginta fex millibus partium, ne quidem parte unica àfe differant: Nunc quxfo perpende,fi limites primos, $162 \& 163$. excipiant ftatim limites fecundi, enormi adeo modo fibi propinquiorcs, quid fieret fiinftitueremus nunc tertiam operationem, poftea quartam, imo \& quintam $;$ haud dubitatis, credo, de eo quod dixi, paucis iftis operationibus, poffe pro Elliplibus coxquandis perimetris circulorum, perveniri ad lim tes annguftiores, quam quos Ludolphus multis concatenatis operationibus invenit pro ipfo circulo rectificando: Fateor equidem, ulteriores operationes noftras nonnihil difficiles $\&$ longas evadere,propter complicationem fignorum radicalium, qua in ex-prestio-
presfionibus limitum magis magisque coaccrvantur, fed qui hifce delectatur, operx pretium faceret, fiinquireret, num quâ certâ lege limites progrediantur, quo cafu, fine calculo pro lubitu continuari poffent, uti certe jam factum eft, prodefiniendo limite minori, quippe qui, ut fupra monui, femper eft xqualis medio Arithmetico inter limites pracedentes: modò nunc pari facilitate limes major ex procedentibus erui poffet,haberc. mus quod volumus. Interim, quamvis nondum id laboris mihi dederim, ut infituta tertia operatione tertium limitem majorem definierim, poteft tamen, conferendo tertium limitem minorem, qui tam facile invenitur, cum pracedente fecundo majori, perveniri ad rationem magis x qualitati accedentem, quam qux haberur, ex utrôque limite fecundo. Ita in prafenti exemplo, abi limites fecundi $9+{ }^{\sqrt{2}} 82,: 2 \& \sqrt{ }\left[4 \mathrm{I}+\frac{1}{2} \sqrt{2} 6562\right]$ quorum ratio continetur intra 3696 ad 36563 , nunc habebit prolimite minori $9 \pm \frac{V_{82}}{4}+\frac{1}{2} \sqrt{ }\left(41+\frac{1}{2} \sqrt{6562}\right)$ \& promajori ${ }^{V}\left(41+\frac{T^{2}}{}{ }^{\vee} 6562\right)$ hos limites reperio contineri intra tereninos hujus rationis 56717 ad 56718 quos vides una tantum unitate differre. Ellipfis igitur noftra, cujus axes conjugati funt ut 5 . ad 4, è jam proximitatis ad perimetrum circuli reduta eft, ut exhiberi posfint dux circumferentix circulares una Ellipfimajor, altera eâdem miner, qua tamen in plusquam quinquaginta fex millibus partium, ne unâ quidem à fe differunt.

Inferiptam fineam circumfcripta effe minorem eertum eft, cum linex funt ad easdem partes cave. Dubitabit autem furtaffe aliquis: an rales finr he multigibbx; fed tales effe, manifefte infertur ex conffructione earum ipfa per motum repeutem. Et mirum videri non deber, cum circulus lineam ad eajden partes cavamin pluribus punctis tange.e posfit, quod refta non poreft.

Excerptum primum; ex Epiftola refponforia

G. G. Leibnitii ad F.Bernoullium,

Datâ Berolini 1. Febr. 1707.

meOgitavi inter f́cribendum, an tua per circulum appropinquandi ad curvam Ellipfeos Methodus applicari appropinquationi rectx ad circuli circumferenuiam posfit, adhibendo curvam Ellipfiformem, qux in rectam extendi poteft. Sit linea Epicycloidalis A B CDE [Fig. 40.] defrripta revolutione circulicujusdam mobilis, fuper circulo immobili ABF. Sit B D, chorda maxima in dieta Epicycloidali, per quam abfcindetur fegmentum BCD: huic adjungatur aliud, pet omnia congruum BKD, \& ita formabitur linea Ellipffformis BCDKB, rectificabilis per Geometriam ordinariam, talem enim affumtam fuppono, cujus \& puncta per Geometriam communem definiri poffunt Hxctractetur per motum repentem ut Ellipfis, \& habebimus curvas ei x quales wel ad sam in ratione data, qux ad circulum in infinitum accedent ; adeoque lineam rectificabilem quousque libebit,admove:ado ad circularem, vicisfim circumferentiam circuli magis magisque admovebimus menfurationi feu Rectx.

Excerptum lecundum, ex Epifola

F. Bernoullii at G.G. Leibnitium,

Bafica 23. Martii 1707.
Fig. 41

QUxlibet linea rectificabilis huic fini infervire potef, etfiEll!pfeos formam non habeat. Sit enim(Hig.41) BA arcus curvx cajuscunque ex. gr. Parabolx, ad. jungatur ad B, verfus partem alteram, arcus alias

関

per omnia fimilis \&xqualis $B D$, ita quidem, ut in B (quanquam nec hoc abfolute fit neceffarium) habeant communem tangentem, hoc eft, ut forment curvaturam continuam : jam daobus iftis arcubus BA , BD , adaptentur duo alii prorfus fimiles \& xquales EA, ED ; ut hinc oriatur figura clanfa Ellipfiformis B A ED, cujus tota circumferentia æquatur arcui BA quater fumto, neque obftat quod in $\mathrm{A} \& \mathrm{D}$ arcus in angulos coëant, non vero, ut in $B \& E$, abeant in curvam continuam. Jamfihuic figurx B A E D, alia per totum congruens PNQM admoveatur $\&$ altera alteram obrepat ut in Ellipfi; deferibet punetum \mathbf{O} curvam quampiam quadrigibbam, qua erit arcus BA octupla, hxc quadrigibba poftea mutabitur in otigibbam, $\&$ ita porro \&c. Fateor equidem,curvas iftas multigibbas non effe uniformis naturx, ut funt illx qua generantur ex Ellipfibus, conflant enim ex arcubus diverfis, qui tamen in continuam ubique abeunt curvitatem, \& hoc jam fufficit, pro approximatione ad Circulum : apparet itaque, quomodo nunc Parabolx arcus, \& qux ab eo dependet, atea Hyperbolx per circulum quantumvis prope menfurari posfit, quod fanc hactenus nemo feliciter executus eft ; hac enim methodo, intra paucas horas pro illis arctiores limites invenirentur, quam quos mifi pro Ell.pfibis. Interim, ut \& hoc moneam, non neceffe ef ut arcus BA quater fumatur ad formandam figuram clatefam Ellipfiformem BAED, niff eam omnino ad integram gircumferentiam reducere velimus. Nam quilibet arcus folus cujusvis curve per obreptionem fubcontrariam continuo repetitam in infinitum taindem abis, faltem in arcum circuli. Voco autem obrcpionnern fuscontrariom, quando arcus aliquis fe ipfum obrepit inverse, hoceft, quando in reptionis indtio extremitares oppoifte fe mutuò tangunt; hoc enim modo, arcus propofitus, per reptionem primam mutabitur in alium ejusdem, ut voco, amplited nis, fed qui conftabit ex duobus arcubus fumitibus \& aqualibus, qui, fi nunc porro fubconttariè fe mutuo obrepant, oriettr arcus conftans quatuor arcubus fimilibus \& xqualibus;' adeoque ad rotunditatem arcus circularis magis accedens; per obreptionem tertiam fubcontrar. am formabimus arcum hab ntem arcus octo fimiles \&x-
quales, \& fic magis ac magis ad ipfum arcum circuli, jusdem cum pracedentibus fingulis amplitudinis, perveniemus. Hoc unicum adhuc addam, pro applicanda methodo ad rectx appropinquationem ad circulum; fumi poffe Ellipfin, cujus axis minor fit indefinitx parvx longitudinis, qua utique nihilaliud erit quam linea reta duplicata. Hanc fi more Ellipfium pen reptionem moveas, habebis loco curvx quadrigibbx quatuor latera quadrati : poftea loco octigibbex ambitum octogoni. Ita fcilicet Ellipfi abeunte in reCtam linean, Curva multigibbe quoque abeunt in Polygona regularia, \& hac tandem in circulum. Id quod mihi fuppeditavit modum hune facilem exhibendi per conftructionem coneinuò \& celeriter appropinquanFig. 42 tem, arcum circuli xqualem linex rectx datr. Efto (Fig 4:) data reCta $B G$ perpendicularis ad aliam restam $A C$. Ducatur ad arbitrium re $C t a B A \&$ angulo A fiat x qualis angulus $A B C$, ut habeatur triangulum ifofceles BCA. Jam ducatur perpendicularis $C D$ in $A B \&$ ipfi $C D$ capiatur equalis $C L$; jungatur DL, in quam agatur perpendicularis CE, cui xqualis abfcindatur CM. Jungatur EM \& ducatur perpendicularis CF, hocque continuetur in infinitum; \& fit CR illarum perpendicularium ultima : dico,arcum circuli RS radio CR defcriptum, fore xqualem rectx propofitx BG. Quanquam poftea viderim puncta $B, D, E, F \& c$. effe in quadratrice Dinoftrati, quod quidem facile demonfrari potef, adeoque, hoc nomine nihit novi me proflitife, quatenus diu jam cognitum eft, rectificationem circuli dependere, à determinatione interfectionis quadratricis \& ejus diametri. In eo tamen aliquid fingulare hic factum eft, quod hic puncta in quadratrice D, E, F \&c. obperpendicularitatem CD, CE, CF \&c certius defignentur, adeoque puncuum ultionum R multò accuratius determinetur, quam per modum vulgarem, quô, propter fectiones magis magisque obliquas,puncta in quadratrice tandem valde incerta evadunt. Caterum vero, quicquid de eo fit, elegans mihi videtur \& minimè contemnendum, quod hac, ab aliis jam quidem inventum $\&$ ut fingulare quid venditatum, idem tamen, noftx inventionis nonnli minimum tantum Git Corollarolam

Excerptum tertium,ex Epiftola

BERNOULLIANA,

Data Bafilex 15. April. 1709.

MUltum excolui \& promovi hanc materiam (de Mo: $t u$ Reptorio \& Multigibbis) \& admiranda Theoremata detexî, Limites quippe pro Ellipticis petio metris ad circulares revocandis non tantùm provexi ulterius, fed etiam certam, eamque facilem legem provehendi quousque libuerit, erui, habeoque Theorema Geometris cum. (mox fubnectendum) quod applaufum tuum merebitur, exhibens duos circulos quantumvis prope æquales quorum unius circumferentia major, alterius minor eft circumferentia Ellipfis propofitx Aliud verò longe generalius mihi fuppetit Theorema, quod fpectat ad quamyis curvam propofitam, intra duos arcus Circulares quantumvis fibi propinquos, coaretandam, idque è veftigio, Ecce Theorema prius : Efto in Figura appofita

femicircumferentia $A_{4} \mathbf{B}$, cujus diameter AB compofita eft ex femiaxibus alicujus Elippfis AC \& BC. Sit femicircumferentia bifecta continuo in 2, 4, 8, 6 \&c. quotcunque libuetit parte xquales, atque rectarum ductarum ex puncto C ad divifionum puncta imparia $x, 3,5,7$, capiatur Media Arithmetica
[hoc eft $\mathrm{C}_{1}+\mathrm{C}_{3}+\mathrm{C}_{5}+\mathrm{C}_{7},: 4$] qua vocetur M. \& reGarum ductaram ex puncto C ad diviionum pancta paria, 2 , 4,6 , autirunque radio R, feu $\frac{1}{2} A B$, fumatur media Arichmetica (hoc eft $\mathrm{C}_{2}+\mathrm{C}_{4}+\mathrm{C}+\mathrm{R}_{3}: 4$) qua vocetur N , dico, $\mathbf{M} \& \mathbb{N}$ fore radios duorum citculorum, quorum ille circunferentia'n habet majorem, hic minorem quam Ellipfis propofita. Sunt enimilli duo circuli, circumfrriptus \& infriptus curve muls gibbx Ellipticam circumferentiam zquanti, duplo plarium exiftenti gibborum, quam eft numerus divifionum. Unde f in octo partes dividatur femicircumferentia $\mathrm{A}_{4} \mathrm{~B}$ erunt $M \& N$ duo radii duorum circulorum circumfcripti \& infrripti curvx fedecigibbx, qua fit Ellipfi xqualis. Ponamus (pro Exemplo) axes Ellipfis effe inter fe ut 5 ad 4 , calculus me docuit Mad Nfore in minore ratione quàm eft 6000001 ad 6000000.

Excerptum quartum, defumtum ex alia ejusdem Epitola ad

$D N, B U R N E T U M$,

Illuft.EpifcopiSarisberien-

 fis filium data 9. Jan. 1707 Autore defiderante, hic infertum, \& ex Gallico verfum.PRopofui olim Pro ${ }^{\text {Th }}$ lema, quod alius Mathematicus mihi propofuerat de curva data in aliam differente" (Algebraica in Algebraicam) eiusdem longztudines trans. mutanda; fimulq; infinuavi,folutionem ejus in mea ma. nu effe. Hujus folutionem dare poffe, fibi vifus eft Dn. Crai. gius, camque Transactionibus Lond nenfibus Januar. \& Febr. 1704. inferuit, unde poftea in Acta Lipfienfia Aprilis 17,05. translata eft. Sed oftendi in Actis Augufti ejusdem ami, camp
proprian folutionem darem, à Dno. Craigio principium pccitum fuife, quoniam folutionem fuam fundavit in poftulato xquè aut magis difficili, quam ipfum Problema. Supponit enim, quod femper facile fit dividere fummam duorum quadratorum in duo alia quadrata quorum latera fint fummabilia, feu dentordinatas figurarum quadrabilium. Dn. Craigius triennio elapfo, fatisfatturus tandem poftulato fuo,Schediafma quoddam inferuit Transationibus Londinenfibus Menfium Martis \& Apriiis Anni 1708 , ubi majorem adhuc Paralogifmum admifit, nam credens exhiberi à fe curvam novam priori xqualem, reyera exhibet curvam eandem cum priore ad alium fattem axem accommodatam. Si bona eflet Domini Craigi folutio, ipfe Autor ejus primus non fuifet: lubricus enim lo eft, \& me ipfum, fpecies ac fimplicitas folut onis olin deccperat, cujus rei teftes habeo am cos fed mox Paralogisnum detexi. Quin \& Dn. Moirraus in hanc falfam folutionem incidit triennio abhinc, parumque abfu't ab cjus p.blicatione: Sibi tamen diffidens, mecum eam prius communicavit, errorerrque me monente agnofens, fibi cavit. At Din Craigius non tantum publicè folutionem fuam nulli o'ícétioni obroxiam pronuntiare audet, fed etiam meam Methodum per Motun Reptorium fpernit; cùm tamen ea fit una ex meis inventionibus quas maximè xftimo, quam Lcibnitius, Nevvtonus aliique intelligentes non fatis x ftimare potuerunt, \& cujus ope detexi Quadraturx Circuli longè praterenda, quale quid eft Mcthodus Generalis omnes curvas ad Circulorum circumferentias ipfis xquales reducendi tam prope quàm velim. Et frufra Craigius folutionern meam Mechanicam effe pronuatiat, tanquam à motu dependentem, cum tamen ad calculum Aralyticum reduci posfit, \& Curva data exiftente Algebraica, etsam reptorix fint tales.

