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Non-Oberbeck-Boussinesq (NOB) effects on the Nusselt number Nu and Reynolds num-
ber Re in strongly turbulent Rayleigh-Bénard convection in liquids were investigated
both experimentally and theoretically. In the experiment, the heat current, the temper-
ature difference, and the temperature at the horizontal mid-plane were measured. Three
cells of different heights L, all filled with water and all with aspect ratio I" close to 1,
were used. For each L, about 1.5 decades in Ra were covered, together spanning the
range 108 < Ra < 10'L. For the largest temperature difference between the bottom and
top plates of A = 40K the kinematic viscosity and the thermal expansion coefficient, due
to their temperature dependence, varied by more than a factor of two. The Oberbeck-
Boussinesq (OB) approximation of temperature independent material parameters thus
was no longer valid. The ratio x of the temperature drops across the bottom and top
thermal boundary layers became as small as y = 0.83, as compared to the ratio y =1 in
the OB case. Nevertheless, the Nusselt number Nu was found to be only slightly smaller
(at most 1.4%) than in the next larger cell with the same Rayleigh number, where the
material parameters were still nearly height-independent. The Reynolds numbers in the
OB and NOB case agreed with each other within the experimental resolution of about
2%, showing that NOB effects for this parameter were small as well. Thus Nu and Re are
rather insensitive against even significant deviations from OB conditions. Theoretically,
we first account for the robustness of Nu with respect to NOB corrections: the NOB
effects in the top boundary layer cancel those which arise in the bottom boundary layer
as long as they are linear in the temperature difference A. The net effects on Nu are
proportional to A% and thus increase only slowly and still remain minor despite drastic
material parameter changes. We then extend the Prandtl-Blasius boundary-layer theory
to NOB Rayleigh-Bénard flow with temperature dependent viscosity and thermal diffu-
sivity. This allows the calculation of the shift of the bulk temperature, the temperature
drops across the boundary layers, and the ratio x without introducing any fitting param-
eter. The calculated quantities are in very good agreement with experiment. When in
addition we use the experimental finding that for water the sum of the top and bottom
thermal boundary-layer widths (based on the slopes of the temperature profiles at the
plates) remains unchanged under NOB effects within experimental resolution, the theory
also gives the measured small Nusselt-number reduction for the NOB case. In addition,
it predicts an increase by about 0.5% of the Reynolds number, which is also consistent
with the experimental data. By theoretically studying hypothetical liquids with only one
of the material parameters being temperature dependent, we shed further light on the
origin of NOB corrections in water: While the NOB deviation of x from its OB value
x = 1 mainly originates from the temperature dependence of the viscosity, the NOB
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correction of the Nusselt number primarily originates from the temperature dependence
of the thermal diffusivity. Finally, we give the predictions from our theory for the NOB
corrections if glycerol is used as operating liquid.

1. Introduction

Controlled experiments on Rayleigh-Bénard (RB) convection are normally done with
relatively small temperature differences A between the top and the bottom plate, so that
the Oberbeck-Boussinesq (OB) approximation can be used. That approximation assumes
that the material properties such as the kinematic viscosity v, the thermal diffusivity «,
the heat conductivity A, the isobaric specific heat capacity c,, and the isobaric thermal
expansion coefficient 8 can be considered to be temperature independent and thus to
have constant values all over the cell (Oberbeck (1879); Boussinesq (1903)). However,
in order to achieve large Rayleigh numbers Ra, one would like to make A as large as
possible. One of the relatively well analyzed effects due to deviations from OB conditions
is that the temperature drops across the top and the bottom thermal boundary layers
(Wu & Libchaber (1991); Zhang et al. (1997)) become different, i.e., an asymmetry with
respect to the mid-plane of the cell shows up. However, it is unclear what the associated
NOB effects on the Nusselt number Nu and the Reynolds number Re are. Nonetheless, it
is often argued in very general terms that NOB effects are responsible for some measured
large Ra peculiarities in Nu or Re. The lack of our understanding of possible NOB
effects at large Ra on Nu and Re measurements are the more unsatisfactory, as it is
this large Ra regime where the crossover to an ultimate scaling regime Nu ~ Ra'/? is
expected (Kraichnan (1962)). In helium gas beyond Ra ~ 10! Chavanne et al. (1997,
2001) find a steeper increase of the logarithmic slope of the Nu(Ra) curve as compared
to Niemela et al. (2000, 2001) and associate this finding with the ultimate Kraichnan
regime. However, there is a major controversy on whether these and other large Ra data
are “contaminated” by NOB effects or not (Chavanne et al. (1997, 2001); Roche et al.
(2001, 2002); Niemela et al. (2000, 2001); Niemela & Sreenivasan (2003); Ashkenazi &
Steinberg (1999)).

The aim of this paper is to first present systematic measurements of NOB effects on the
Nusselt number Nu, the Reynolds number Re, and on the center temperature T, of the
cell, and then to theoretically understand these NOB effects. We do so by extending the
Prandtl-Blasius boundary layer theory to the case of temperature dependent viscosity
and thermal diffusivity and apply it to NOB Rayleigh-Bénard flow. Our results hold for
liquids, whose specific heat capacity ¢, and density p except for buoyancy are temperature
independent in sufficiently good approximation, and if the flow is incompressible.

For small Ra close to the transition to convection and pattern formation NOB effects
were treated theoretically by various authors, and most systematically by Busse (1967).
They were examined experimentally by Hoard et al. (1970); Ahlers (1980); Walden &
Ahlers (1981); Ciliberto et al. (1988); Bodenschatz et al. (1991); Pampaloni et al. (1992);
and reviewed by Bodenschatz et al. (2000).

The outline of the paper is as follows: In Sect. 2 we introduce our notations and define
quantitative measures of NOB effects. These include different thicknesses of the thermal
boundary layers (BL) as well as different temperature drops at the bottom and the top
plates. In section 3 we present our experimental results for the various measures of NOB
effects, in particular for Nu and Re. We find robustness of Nu and Re towards NOB
effects which we try to rationalize in section 4. In section 5 we briefly review the model
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of Wu & Libchaber (1991) and Zhang et al. (1997), who analyzed NOB effects on RB flow
with cryogenic helium gas and with glycerin, both experimentally and theoretically. We
compare the predictions of their model with our data for water. Although they correctly
predict the robustness of Nu with respect to NOB effects and even account for the very
small Nu decrease for the NOB case, it turns out that one of the basic assumptions of
the model is not fulfilled. In Section 6 we apply an extended Prandtl-Blasius boundary
layer theory to the NOB Rayleigh-Bénard flow, giving excellent agreement for the center
temperature, the Nusselt number, and the Reynolds number with the measured data.
Section 7 contains the conclusions.

2. Characterization of non-Oberbeck-Boussinesq effects
2.1. Control parameters

What fluid properties should be used to define the non-dimensional numbers of non-
Oberbeck-Boussinesq Rayleigh-Bénard flow? Since the commonly used control parame-
ters are the temperatures Ty and T; at the bottom and top plates, the immediate choice
of a reference temperature to characterize the typical material properties is the mean
temperature Ty, = (T} + T3)/2. The overall temperature drop is A = T — T;. The corre-
sponding definition of the parameters describing the thermal convection is the Rayleigh
number

AL
Ra,, = PrngAL” = Ra, (2.1)
UmBEm
the Prandtl number
Prp, =vp/km = Pr, (2.2)

and, as a response of the system, the Reynolds number of the resulting large-scale circu-
lation (the “wind”)
UL
Re; = — = Re. (2.3)

Vm

Here U is the mean velocity of the large scale wind in the bulk of the fluid. We assume
that there is only one such velocity scale, or, to be more precise, that the velocity of the
wind is the same close to the top and close to the bottom of the cell. The label m indicates
that the material parameters are those at the mean temperature T,,. In the following we
shall skip the label m of Ra, Pr, Re, and later also of the Nusselt number Nu. Whenever
these nonlabelled dimensionless parameters are used, the respective material properties
are meant as those at the mean temperature T, of the external control temperatures.
The actual time averaged temperature in the bulk is called T.. It is different from T,
due to NOB effects, T. # T,

The notation used in this paper is shown in figure 1. The fluid properties such as
v, Kk, and 8 carry the same index as the corresponding temperature at which they are
considered, e.g., v; = v(T}) for the kinematic viscosity at the top plate, and so on.

2.2. Temperature profile

Wu & Libchaber (1991) have shown that for NOB thermal convection in cryogenic helium
the temperature drop across the top BL A; is smaller than the temperature drop across
the bottom BL Ap. In contrast, for NOB thermal convection in glycerol Zhang et al.
(1997) showed that the opposite is the case, i.e., Ay > Ay. In general, the ratio of the
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temperature drops is described by the parameterf
X =Xxa = Ap/Ay. (2.4)

Just as in large Ra Rayleigh-Bénard flow under OB conditions, we have no indication
that for the time averaged profile there is a temperature drop across the bulk (center)
of the RB cell, and therefore we assume that the total temperature difference between
the cold top plate temperature T; and the hot bottom plate temperature T, = Ty + A
consists only of the temperature drops across the thermal boundary layers,

A=A+ Ay, (2.5)

The time averaged temperature in the center of the cell then is T, = Ty + Ay = T — Ay.
It deviates from T, and expresses the response of the system to the NOB effects, while
T, is just the arithmetic mean of the external control parameters. Depending on the
fluid, T may be larger or smaller than T},.

Equations (2.4) and (2.5) can be solved for the temperature drops A, and A, across
the bottom and top thermal BLs,

X
Ay = ——A 2.
b 1+ x ’ ( 6)
1

The temperature profile in the container is sketched in figure 1. In section 6 it will be
calculated within an extended Prandtl-Blasius boundary layer theory.

2.3. Heat flux

The heat flux can be evaluated from the local heat-conservation equation
pc,,(atﬁ + ui6i0) =0; (A@ze), (2.8)

where 6 is the temperature deviation from a convenient reference temperature, e.g. T),.
8;... means 9.../0z;, i = z,y, z are the three coordinates, and summation over repeated
equal indices is assumed. By starting from Eq. (2.8) we have already assumed that
the variation of the entropy per mass s with pressure p to a good approximation does

not contribute, more precisely that |%| > |cl (g—;)T %L Using % = —pg, the right
P

hand side of this inequality can be rewritten as pg(0T/0p)s = ay. Thus we assume that
ag, the adiabatic temperature change with pressure, is much smaller than the applied
temperature gradient A/L (Furukawa & Onuki (2002); Gitterman (1978); Landau &
Lifshitz (1987)). Indeed, for our experiment with water described in Sect. 3 we typically
have a,L/A = 1075 for this so called Schwarzschild parameter, i.e., it is negligibly small.
Note that for gases close to the critical point the Schwarzschild correction in general
cannot be neglected (Gitterman & Steinberg (1971); Gitterman (1978); Ashkenazi &
Steinberg (1999); Kogan & Meyer (2001); Furukawa & Onuki (2002)).

We area and time average (...) , equation (2.8). The label A indicates planes z =constant,
parallel to the top and bottom plates of the container. In addition, we assume that plane
averaged products of the type (pc,0.(u.0)), or (A9.0), can be approximated by their
respective factorizations {pcp) 4 (0:(u.0)) 4 and (A) 4 0. (f) 4. We then obtain

0. [(pcp)A (u0) 4 — A(2)0: <0)A:| = (uz0) 4 9: (pcp) 4 ~ 0. (2.9)
In the second (approximate) equality, ~, we have used the fact that for liquids the mass

 Note that the parameter x of Wu & Libchaber (1991) is z = x .
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FIGURE 1. Sketch of temperature profile details: The time averaged temperature versus height
z in the OB and NOB cases, respectively. The height of the cell is L. The temperature at the
top plate z = L is T; and the one at the bottom plate z = 0 is Tp. The mean temperature
is T, = (T} + Tp)/2. The thickness of the top thermal BL is A, that of the bottom thermal
BL is Ap. The respective temperature drops are A; and A,. The time averaged temperature
in the center is T.. For water as the working fluid this center or bulk temperature T is larger
than the mean temperature T,,. While A5 in the OB case are equal, under NOB conditions
in the case of water the bottom BL is thinner as the top one, Ay < A;. The z-dependence of
A implies a (numerically small) curvature of the temperature profiles in the BLs. For T, > T,
the top BL width becomes larger and the bottom BL width smaller if OB is no longer valid. As
will be discussed later, the sum of both widths at least for water seems to be the same as the
corresponding sum under OB conditions. The relations between the slope-based BL thicknesses
X% and the profile based thicknesses A*°” (“99% rule”) will be shown to be Al < )\f’%%, as is
apparent from the graph, cf. also subsection 6.2, in particular Figure 15.

density p and the isobaric specific heat capacity ¢, per mass to a good approximation
are temperature and therefore height independent. For the case of water between 20°C
and 60°C, on which we will focus, this is given with a precision of 1.6% and 0.07%,
respectively, see table 1. Thus in the following we always consider p and ¢, as being
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temperature | 10~3p 1073¢, [10*8 A 108 | 105 | Pr
°C kgm 3| Jkg 'KV K Y\ Wm K m2s ! m2s !

T = 20.000 | 0.99809 4.175 2.05 0.5975 0.1448 | 1.004 |6.94
T: = 30.911 | 0.99532 4.169 3.14 0.6162 0.1494 | 0.794 |5.31
T, = 40.000 [ 0.99220 4.169 3.88 0.6297 0.1528 | 0.669 |4.38
T. = 41.822 | 0.99150 4.169 4.02 0.6322 0.1534 | 0.648 |4.23
Tp = 50.911 | 0.98761 4.173 4.64 0.6434 0.1563 | 0.557 |3.57
T, = 60.000 | 0.98316 4.178 5.21 0.6529 0.1590 | 0.485 |3.05

TABLE 1. Fluid parameters for the medium cell of height L = 24.76 ¢m in the local gravity field
(Santa Barbara) g = 979,1 ¢m s™!, with the top temperature 7; = 20.00°C and the bottom
temperature Ty, = 60.00°C. The corresponding Rayleigh number is Ra = 2.26 - 10'° and the
Prandtl number is Pr = 4.38, both based on the fluid parameters at the mean temperature
T = 40.00°C. This corresponds closely to the last data point for the medium cell in figure 9.
The value x = 0.833 is obtained from the measured center temperature 7, = 41.822°C. The
mean temperatures T; and Tj in the thermal top and bottom BLs are Ty = Ty + A;/2 and
T; = Ty — Ap/2; the temperature drops follow from Ay =T — T; and Ay = T — 1.

constant. All obtained results are considered as applicable to liquids, which share these
properties p = constant and ¢, = constant.

Eq. (2.9) then means that the expression in rectangular brackets is z-independent and
therefore defines the conserved thermal current

(u0) 4 — K(2)0.(0) 4, = J . (2.10)
Here k(z) = A(z)/pcp is the thermal diffusivity. J is z-independent and interpreted as
the thermal flux, connected with the heat flux Q by J = Q/pcp. Making the thermal flux
J or the heat flux () dimensionless, we obtain the Nusselt number

Ami/L - Iimi/L = KZ:A [(u.0) 4 — K(2)0: (0) 4] - (2.11)

Again, Nu without label m refers to the flux as being nondimensionalized with the
material parameter k,, taken at the mean temperature T, of the control temperatures
at the plates.

Nu, = Nu =

2.4. Thermal boundary-layer thicknesses

As under OB conditions the boundary layer thickness in the NOB case can be defined in
two ways. A theoretically convenient definition is via the slope of the temperature profile
at the plate. As the thickness A\* of the boundary layer we take that distance from the
plate, where the tangent to the temperature profile at z = 0 (or correspondingly at
z = L) reaches the center temperature T.

From eq. (2.11) we have Q = —A(T'(z = 0)) 0, (#) 4 (0). For given heat current () the
slopes at the top and bottom are different, because the A’s are different due to their
temperature dependence. For z > 0 but in the immediate vicinity of the plates, where
the convective contribution in (2.11) is still negligible, the slope 9, () 4 already varies
with z since A(T'(z)) varies. Thus there is a curvature in the NOB profile which is absent
in the OB case where A is height (z) independent.

Going e.g. from the bottom plate z = 0 into the interior of the RB cell, A(z) decreases
according to the material properties of water, given in Table 1. Therefore the slope 0. (6) 4
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increases and 0z/0(6) as its inverse decreases. The profile thus first bends downwards
(more parallel to the plate surface) before near the bulk range it more or less sharply
bends upwards to merge into the constant center temperature 7,.. This characterictic
additional curvature of the profile, which increases the angle under which the temperature
profile hits the bottom plate surface, is a signature of NOB conditions in the thermal
boundary layer. In comparison to the OB case the slope 9(6) /0(—z) = Q/A is smaller
in the NOB case, since A is larger at the bottom temperature Tj. In contrast, at the
cooler top plate the slope becomes larger under NOB conditions because of the smaller
A, and thus the angle to the plate surface here decreases. This breaks the symmetry
of the temperature profile in the z-direction about the horizontal midplane of the cell.
In figure 1 we have sketched the BL temperature profiles for the OB and NOB cases.
(Near onset of convection this broken midplane symmetry is one of the important factors
for pattern formation under NOB conditions, which is different from the OB case, cf.
Busse (1967).) These findings about the temperature profile changes are still open for
experimental verification.

Now, by definition, the flux conservation equation (2.11) for the heat flux @) or thermal
flux J implies a relation between the ratios of these BL thicknesses A3, Al and the
corresponding temperature drops Ay, A;. Namely, applying equation (2.10) or (2.11) at
the two plates z = 0 and z = L gives

Ay Ay Km A
Kt F = = = Nu .
¢

(2.12)
In analogy to the ratio x of the temperature drops (cf. eq. (2.4)) we also introduce the
ratio of the slope BL thicknesses

)\SI Kp Ab Kp
X*”:T;:EE:EX:X”X’ (2.13)

which is another measure characterizing NOB effects. Here x, is the ratio
Xr = Kb/kt 5 (2.14)

and x,, X3, etc. are similarly defined.
For the thicknesses of the BLs themselves one has from eqs. (2.12) and (2.6),(2.7)

)\_gl_AbKJbl X KJ(,].

—=-b* - _ A M - 2.15
L A Kpm Nu 14 XKy, Nu’ (2.15)
AA 1 1 1
A _ Stk 2 1 /e 2 (2.16)
L A Ky Nu 14 xkn Nu
By adding these two equations one easily obtains for the Nusselt number
L A A
Nu fede ¥ Kol (2.17)

TN RaA

Another way to define the thermal BL thickness takes the full temperature profile of
the BL into account. It defines the thermal BL thickness A?°% as that distance from
the plate, at which the temperature is near the center temperature, e.g. if at the bottom
T = T, —0.99A, is achieved. This definition is in analogy to the definition of the thickness
6 of the kinetic BL, defined by the distance where, say, 99% of the bulk velocity is
achieved.

In the OB case this profile-based thickness § of the kinetic BL follows from the classical



8 G. Ahlers et al.
Prandtl-Blasius theory (Prandtl (1905); Blasius (1908)),
8 =aL/Re'/? . (2.18)

In Grossmann & Lohse (2002) we have determined the prefactor a for the case of flow
in RB cells from the experimental results of Qiu & Tong (2001b), leading to a = 0.483.
(This value differs, of course, from the Blasius factor, valid for flow along infinite plates.)
Under OB conditions the profile-based thermal boundary-layer thickness A% can be
calculated according to the Prandtl-Blasius BL theory (cf. Meksyn (1961); Schlichting &
Gersten (2000). It is (cf. also Grossmann & Lohse (2004))

\99% _a'C(Pr)
L Rel/2prl/3
with a function C'(Pr) given by Meksyn (1961). For large Pr numbers one has C(Pr) — 1,
whereas for small Pr one finds C(Pr) o Pr—'/%. The prefactor a' in principle can be
different from the prefactor a of eq. (2.18).

While A?°%/§ oc C(Pr)/Pr'/? depends on Pr only, the corresponding ratio A*/§ oc
vVRe/Nu depends on both Pr and Ra in general. From the above profile discussion we
expect A99% > X5 In section 6 this expectation will turn out to be correct.

Apparently the flow in the BLs of large Ra number RB flow will be time dependent.
There are lots of BL separations and plume formations. Thus also the terms 0;6 in the
heat conservation equation (2.8) and d;u; in the Navier-Stokes equation for momentum
conservation

(2.19)

Oru; + ujajui = —8,»% + 63'(1/6]'1&,') (2.20)

will contribute. The flow is no longer laminar time independent. But apparently the over-
whelming amount of RB data is consistent with the assumption that still the character-
istic Prandtl scaling of the wall normal quantities holds, z o« L/v/Re and u, o U/v/Re.
The boundary layer flow is not yet fluctuation dominated as it is in fully developed
turbulence, where the profile is expected to be adequately described by a logarithmic
profile.

The formulas (2.4), (2.5), (2.6), and (2.7) represent our description of the basic features
of the temperature profile. Equations (2.8), (2.9), (2.10), and (2.11) are consequences
of the local conservation of heat. Equations (2.12) and (2.15),(2.16) contain additional
physics, namely the definition of the BL thicknesses A’ and A{'. They reflect the fact
that the heat transport into the liquid at the entrance z = 0 and out of the liquid at
the exit z = L is purely molecular and convection does not yet contribute. Note that
the profile thicknesses )\g?t% instead contain the influence of convection, represented by
(uZH)A -

3. Experimental results
3.1. Ezperimental setup

The experiments were done using three cylindrical cells filled with water. In each cell
we made measurements of the quantities characterizing NOB effects at constant mean
temperature T, and thus constant mean Pr. In each case the aspect ratio I' = D/L
was close to one. The cells had heights L = 50.62, 24.76, and 9.52 ¢m, and diameters
D =49.70,24.81, and 9.21 ¢m, corresponding to I' = 0.982, 1.002, and 0.967. We will refer
to them as the large, medium, and small cell respectively. For most of the measurements
the mean temperature was T;, = 40.00°C where Pr = 4.38; for some it was 29°C where
Pr = 5.55. We varied Ra by varying A at fixed T}, thus keeping all other parameters in
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FIGURE 2. The ratios xx of the material parameters for T, = 40°C at the bottom and top walls
as functions of A (left), or as functions of Ra = A/An medium (right) for the medium cell. It
is Ay medium = 1.772 X 107°K. The symbol X stands for 3, &, p, or v. xa is indistinguishable
from x., and both x, and x., are basically equal to 1. Deviations from xx = 1 signal NOB
effects. The ratio can be larger than 2 (smaller than 1/2) for xs (x.). Evident consequences are
significant differences of the buoyancy force, of the viscous drag, and thus of the BL thickness
near the bottom as compared with the top region. A nonlinear dependence of the various xx’s
on A seems apparent.

the definition (2.1) of Ra fixed. Therefore Ra here means Ra = A/A,, ;, with Ay, ; =
UmKm [ BmgL: where the label i means “large”, “medium”, or “small” cell. Time-averaged
values of the top-plate temperature T}, the bottom-plate temperature Tp, and the heat
current () were obtained at each Ra. For the medium and large cell we also determined
T. by measuring the side-wall temperature at half-height using eight thermometers at
uniformly distributed azimuthal locations. All measurements were averaged over time
periods ranging from slightly less than a day to several days. For each Ra value the
side-wall temperatures were averaged over the eight locations. Since there is virtually no
heat flow laterally through the wall, we expect the side-wall temperature to be equal to
the temperature of the fluid adjacent to it. Because of the large-scale circulation (LSC),
the fluid temperature varies along a diameter of the horizontal mid-plane, being higher
where the fluid rises and lower where it falls. Qiu & Tong (2001a) made temperature
measurements for a slightly tilted cell with I' = 1.07 and L = 20.3 ¢m in which the LSC
had a preferred angular orientation determined by the tilt direction. Along a diameter
oriented to coincide with the tilt direction they showed that the temperature variation is
linear. For a Rayleigh number of 3.3 x 10° (A = 16 K) they found it to be 6T ~ 0.12 K
across the radius, giving §7'/A ~ 0.0075. Because of the linear variation of T along the
diameter, we expect the average temperature given at two opposite locations to be equal
to the center temperature T, to better than 0.1% of A. Since we averaged the readings
of eight thermometers uniformly distributed around the azimuth, we believe that our
side-wall temperature-readings give an accurate determination of T,. We note that such
a determination can not be done accurately with a single thermometer, as was attempted
by Chilla et al. (2004). For details regarding the experimental apparatus and procedures,
see Brown et al. (2005).
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FIGURE 3. The relative deviation 2(X; — X;)/(Xp + X;) of a property X from its mean value
(Xp + X¢)/2 as a function of the temperature difference A for a mean temperature Tr, = 40°C.
Solid line: expansion coefficient 3. Short dashed line: heat conductivity A and thermal diffusivity
k. Dotted line: density p. Long dashed line: kinematic viscosity v. Dash-dotted line: Prandtl
number Pr.

3.2. Temperature measurements

The ratios xx, Xv, X8 --- (see e.g. equation (2.14)) characterize the strength of the NOB
effects from the material properties. For the A range covered in the medium and small
cell, these effects can be considerable, as seen from Fig. 2. In particular, this holds for the
kinematic viscosity, which at the top wall is more than twice as large than at the bottom
wall, and for the thermal expansion coefficient 3, which at the top wall is less than 1/2 of
its value at the bottom wall. The effect on x, and x4 is up to 8%, whereas it is negligibly
small for the density p and the specific heat capacity c,. Figure 3 displays the relative
deviations 2(X, — X;)/(Xp + X;) of the various material properties. A similar analysis
of the properties of the helium gas used for Nusselt-number measurements in cryogenic
experiments was carried out by Niemela & Sreenivasan (2003) (see their Fig. 6). In the
helium case the major contribution to NOB effects comes from ¢, and j3; unlike for water,
the viscosity plays only a minor role.

In Fig. 4 we show the temperature differences Ay = T, — T, (circles) and Ay =T, — Ty
(squares) for Pr = 4.38. The open (solid) symbols are for the medium (large) cell.
The increasing difference between A, and A; with increasing A reflects the growing
deviation from the Oberbeck-Boussinesq approximation; for OB conditions one would
have Ay, = Ay = A/2. In Fig. 5 we show half this difference, equal to T, — T}y, as a
function of A for Pr = 4.38 as well as for Pr = 5.55. Figure 6 gives the experimental
results for x = (Tp — T¢.)/(T. — Tt) = Ap/A; for the large (solid symbols) and medium
(open symbols) cell for Pr = 4.38 (circles) and for Pr = 5.55 (squares). In Fig. 7 we replot
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FIGURE 4. The measured temperature differences Ay = T, — T¢ (circles) across the bottom and
Ay = T, — T; (squares) across the top BL for T,, = 40.00°C (Pr = 4.38) as a function of the
total applied temperature difference A. Solid symbols: large cell. Open symbols: medium cell.
The solid and the dashed lines originate from our theory presented in section 6.

x as a function of Ra for the medium cell and Pr = 4.38. In Figs. 5 and 6 equations for
polynomial fits to the data are given in the caption. In section 5 we will compare our
experimental results for x with the prediction of Wu & Libchaber (1991), based on the
assumption of equal temperature scales at the bottom and the top boundary layers. As
can be seen already from Fig. 6, this prediction does not agree very well with our data.

3.3. NOB effects on Nu and Re

We now come to the NOB effects on the Nusselt number Nu and the Reynolds number
Re. For each L the data covered about 1.5 decades of Ra. However, since Ra < L3A, the
Ra-range of each cell was shifted relative to the next larger or smaller one by about a
decade. The measurements at the largest Ra of a smaller cell, which might be expected
to show departures of Nu and Re from the OB approximation, overlapped with results
at the smallest Ra of a larger cell which in turn would be expected to conform well to the
OB approximation. Thus a comparison between any two cells in the overlapping range
of Ra can be expected to reveal NOB effects.

The Reynolds number Re of the large-scale circulation, deduced from plume transit
times, is measured via temperature auto- and cross-correlations, as detailed by Brown
et al. (2006). The velocity U, on which Re is based via eq. (2.3), is measured as a distance,
proportional to the cell height L, divided by the turnover time of the plumes. In the OB
case Re is found to scale like Ra®% up to Ra ~ 2-10%, and beyond that critical Rayleigh
number like Ra'/2. Here we focus only on possible NOB effects on Re. For that we show
in figure 8 the experimental results for Re/Ra'/? vs Ra. The solid squares (medium cell)
near Ra = 2.1-10'° are for A = 38K and should show NOB effects, whereas those for
the large cell (open symbols) at the same Ra are for A ~ 4.4K, clearly in the OB range.
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FIGURE 5. (a) The difference between the measured temperature T, at half-height and the
mean (control) temperature Ty, = (T + T¢)/2. Solid symbols: large cell. Open symbols: medium
cell. Circles: T,, = 40°C and Pr = 4.38. Squares: T,, = 29°C and Pr = 5.55. The solid
(dashed) line corresponds to the polynomial fit T, — Trm = caA? + c3A% 4 c4A? to the large
(medium) cell data with cs = 1.47 x 103K ™" (ca = 1.81 x 103K ™), 3 = —1.37 x 107K 2
(c3=—1.81x 107°K~2), ca = 1.35 x 107" K~ (c4 = 0). The fat line results from our theory of
section 6, applied to the large cell. Its polynomial representation yielded c2 = 1.105 x 1073 K1,
c3 = 1.09 x 1078K ™2, and ¢4 = 5.79 x 107°K 3. Although c3 and c4 are much smaller than
the experimental values, the overall curve is in quite good agreement with the data. The center
temperature T, deviates from T, by 1.822K for A = 40K, i.e., by less then 5%. Thus the
comparison between theory and experiment is easier if one plots the quantity (T, — Trm)/A2, in
K™ vs. A, as done in the inset (again the solid and the fat line are the fit to the data and the
theory respectively). Figure (b) displays the dimensionless quantity (T, — T7,)/A vs. A for the
large cell only.

For each of the two cells, the extent of departures of T, from the OB approximation T,

is illustrated in the lower figure by the temperature ratio y = 2—1’ = %. As

the two sets of data for Re agree within the experimental precision (about 2%), it can
be concluded that NOB effects on Re for y ~ 0.84 are at most a percent or two.

The Nu data for the large and medium cells were corrected for the effect of the finite
conductivity of the copper top and bottom plates [Chaumat et al. (2002); Verzicco (2004);
Brown et al. (2005); Nikolaenko et al. (2005)] on the heat transport in the fluid (no
correction was needed for the small cell). The influence of the finite wall conductivity
[Ahlers (2000); Roche et al. (2001); Verzicco (2002); Niemela & Sreenivasan (2003)] was
negligible, except for the small cell where a correction of order one percent was applied.
These experiments are described in detail by Brown et al. (2005). Data for Nu(Ra) under
strictly Boussinesq (OB) conditions were reported by Funfschilling et al. (2005). Here we
concentrate on the results relevant to deviations from the OB approximation.

One may wonder whether the weak deviation of the aspect ratio from 1 (I' = 0.982, 1.002, 0.967
for the large, medium, and small cell, respectively) may affect our results on the Nus-
selt number, as Shraiman & Siggia (1990) had suggested a relatively strong aspect ratio
dependence Nu ~ I'~3/7. However, note that the actual dependence is much weaker as
demonstrated experimentally by the work of Funfschilling et al. (2005). There it is shown
for instance that the I' = 6 results for Nu are only about 4% below the I" = 1 results. This
extremely small T' dependence was confirmed more recently also by Sun et al. (2005).
It can not influence the present data over the range 0.967 <T' < 1.002 by a measurable
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FIGURE 6. Experimental results for the ratio x = (Tp — T.)/(T. — Tt) = Ap/A¢ for the large
cell (solid symbols) and medium cell (open symbols). Circles: T;, = 40.00°C and Pr = 4.38.
Squares: Tr, = 29.00°C and Pr = 5.55. The solid (dashed) line is a polynomial fit to the data
that yielded x = 1 +a,(1,1A+aX,2A2 with ay,1 = —5.48 x 103K ™! and a,,» = 3.25 x 107K ~?
(axq1 = —7x 1078K~" and ay,» = 6 x 10"°K~?). The dotted and dash-dotted lines are the
results computed for T, = 40.00 and 29.00°C respectively from Eq. (5.4) as suggested by
Wu & Libchaber (1991). They can be represented by xwr = 1 — 0.00694A + 2.38 x 107 °A?
and xwr = 1 — 0.00945A + 4.35 x 107° A2, respectively. In our data the linear terms seem
dominant, but the nonlinear deviations are clearly visible. For A = 40K the contributions are
1 —0.219 4+ 0.052. The fat line results from our theory of section 6, applied to the large cell. It
is in reasonable agreement with the data.

amount. However, we have corrected for tiny systematic errors in the data as discussed
already by Funfschilling et al. (2005) (due primarily to errors in the geometry) which
can be different for different cells (by a fraction of a percent) by overlapping the Nusselt
numbers (through tiny shifts) of the small and the medium cell and then of the medium
and the large cell in their respective BO regimes.

In Fig. 9a we show the results for Nu in the reduced form of Nu/Ra'/? as a function
of Ra (on a logarithmic scale). For the small and medium cell, one sees that Nu in the
NOB region is slightly smaller, but only by a percent or so, than the data in the strictly
Boussinesq range.

In order to show the NOB effect more clearly, we fitted the strictly Oberbeck-Boussinesq
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FIGURE 7. The ratios x = xa (solid) and x,. (dashed) at T, = 40°C and Pr = 4.38 as
functions of A (left), and as functions of Ra = A/A, medium for the medium cell (right), with
Arnmedivm = Vmbm [ (B gL eqium) = 1.772 x 107°K. Deviations from xx = 1 signal NOB
effects.

data (Funfschilling et al. (2005)) to the empirical function

4
Nu/Ra’? = Z bi[logio(Ra)]! (3.1)

i=0
and obtained the coefficients by = —1.7934, by = 0.85734, by = —0.13992, b3 =

0.009902, by = 0.0002490. The function fits the data within their scatter, but should
not be relied upon for Ra values outside the range 108 < Ra < 10'! used in the fit.
Relative deviations from the function are shown in Fig. 9b. There the deviations from
the OB approximation become more clear. In figure 10 the same data for Nuyop/Nuop
are given as a function of A.

Comparison with Figs. 6 and 7 shows that NOB effects on Nu are negligible in the
range where x 2 0.94 but detectable in the experiment for smaller values of y, i.e., for
larger NOB deviations from xy = 1. But even when x reaches its smallest experimental
value near 0.83, the data fall less than only 1.5 percent below the Boussinesq results.
Even though the NOB effects on Nu are quite small, it is interesting to note that they
diminish the heat transport.

Measurements of x and of Nu under NOB conditions were made before by Wu &
Libchaber (1991) using *He gas at low temperatures near its critical point. For small
Ra, where their cells conformed to the Oberbeck-Boussinesq approximation, they found
x ~ 1.1. It is not known why their results in this OB limit differed systematically from
unity. At large Ra, however, their results for y became as large as 2.5, indicating strong
NOB effects. They did not have two cells of different sizes, and thus of different departures
from the OB approximation at the same Ra, for comparison. However, when their data
were plotted on a log-log scale, the results at large Ra fell significantly below a straight
line drawn through the results at smaller Ra. Assuming that a power-law should have
fit the OB data, one then can conclude that also in this case Nu decreased due to NOB
effects.
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FIGURE 8. Upper figure: Re/Ra"/* vs Ra as measured for the medium cell (solid symbols)
and the large cell (open symbols). (The dashed and solid lines indicate the change of the
Ra-dependence of Re which is not discussed here.) Lower figure: x = A,/A; as a function
of Ra for the medium (solid line) and large (dashed line) cell. The square-symbols originate
from the cross-correlations, the circle-symbols from auto-correlations of temperatures. The solid
squares (medium cell) at the highest Ra (Ra = 2.1-10') are for A = 38K, have x ~ 0.84,
and should show NOB effects, whereas those for the large cell at the same Ra (open symbols),
which are for A =~ 4.4K, have x ~ 0.98, , and are clearly in the OB range. As the two data sets
agree within the experimental precision (2%), it can be concluded that NOB effects on Re are
at most of that order of magnitude for x near 0.84.

1/2

4. Towards understanding the NOB robustness of Nu

Can one understand the insensitivity of Nu to the NOB conditions, which so strongly
contrasts with the sensitivity of the ratios x.,, xg for the material properties, or for the
ratio x = Ap/A;? The center temperature T, deviates from the mean temperature T,,, by
about 5% at A = 40K, i.e., also is rather insensitive. A step towards an understanding
is to divide the Nusselt number Nu in the form eq. (2.17) by its OB value Nupp =
L/(20&y). This gives

Nunos _ 2X8g5 kA + KAy

= 4.1
Nuog At + A KmA (41)
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FIGURE 9. (a) The reduced Nusselt number Nu/Ra'/® on a linear scale as a function of the
Rayleigh number Ra on a logarithmic scale for the small (open squares), medium (solid circles),
and large (open circles) cell for T, = 40°C (Pr = 4.38). For the small (medium) cell deviations
from the Oberbeck-Boussinesq approximation are seen at the largest Ra and yield Nusselt
numbers that are smaller than the more nearly Oberbeck-Boussinesq results obtained from the
medium (large) cell. (b) The relative deviations of Nu from Eq. 3.1 as a function of Ra. This
equation provides a good fit to the data taken under OB conditions in the Ra-range considered
here. In Fig. 10 the same data for Nunyos/Nuop are given as a function of A.

(For clarity in this section we denote the measured Nusselt number Nu as Nunog.) This
ratio consists of two factors. In the first one
1
_ 2055
A+ NS
describing the contributions of the top and bottom thermal BL thicknesses, only the sum

of the respective BL thicknesses in the OB and the NOB cases appears. Similarly, also
in the second factor

i) (4.2)

KeAy + KpAyp
KmA

the corresponding sums k; Ay + KAy and fcm(% + %) appear. In both factors F; and F,

the NOB effects will increase one term and decrease the other term in the respective sums.

If the material parameters depended on temperature only linearly, then there would be

a (partial) cancellation of the NOB effects in the two terms, leading to only small NOB,

order A2, corrections. This point will be made quantitative in subsection 6.4. Thus NOB

Fy = (4.3)
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FIGURE 10. F} x F» = Nunos/Nuop and Fi (defined by equation (4.2) but calculated via
eq. (4.4), second equality sign) as functions of A. Solid circles: F} x F5 for the medium cell.
Open circles: F; for the medium cell. Solid squares: F1 x F5 for the small cell. Open squares:
F; for the small cell. While the product F; x F5 is the measured ratio of the heat currents
@ in the NOB case and that in the OB case, the individual factors Fi; and F> contain the
material properties, in particular F»> depends on x(T') together with x according to eq.(4.3).
The inset shows the parameter F>» = (ktA¢ + kpAs)/(kmA) as a function of A for T, = 40°C.
The input is the material parameter x(7') and the measured ratio x = Ap/A;. The equation
Fy =1+ d2A% 4+ dsA® with do = —6.81 x 1078 K2 and d3 = 0.98 x 1078 K2 yielded a good
fit to the data.

corrections of Nu depend on the nonlinear, at least quadratic contributions to the NOB
deviations of the material parameters, in contrast to those of x or (T, — Trn)/A, xv, and
X3, which have already linear contributions. From figure 2, left, and figure 3 we conclude
that at least for not too large A the A-dependence of the material properties indeed is
basically linear, and we therefore start to understand the robustness of Nu towards NOB
corrections: Linear NOB contributions cancel in Nu.

Let us focus on the A-dependence of the factors F; and F; in eq. (4.1) in more detail.
From the thermal diffusivity x(7") and the experimental results for A; and A, we obtain
F5(A), see the inset of Fig. 10. As was the case for T, — T,,,, the factor Fy can be well
represented by the quadratic equation F» — 1 = do A2, without any linear term (plus of
course higher powers of A). A least-squares fit to the data yielded dy = —6.81 x 1076 K —2.
We will theoretically understand this quadratic dependence in subsection 6.4.

With this Fy and using the experimental results for Nuyog/Nuog from figure 10 we
can calculate

2X%5  Nuwnos/Nuos  Q/Qos
(Agl -+ )\gl) h Fy B Fy
the ratio of the total thermal BL thicknesses. F} is displayed as open symbols in fig. 10.
We see that within an experimental uncertainty of 0.2% the BL thickness ratio Fj is
independent of A, namely F; ~ 1. The experimental data thus suggest that Al + \§! =

F = , (4.4)
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2)& 5 even under strong NOB conditions, where Af! /s’ differs considerably from unity.
Because of our finding for thermal convection in water, that the sum of the thermal slope
BL thicknesses is conserved within experimental precision,

PYLEED Fal=1) V. S (4.5)

the NOB corrections on Nu are only governed by F», and thus are quadratic in A to
an extremely good approximation. The finding F; < 1 would then moreover explain the
observed reduction of Nuyop as compared to Nupg.

Fig. 10 also shows Nunyop/Nuop = Fi x F; for the medium and small cell as solid
circles and open squares, respectively. One sees that within 0.1% or so the data collapse
onto a single curve.

We speculate on the meaning of these results and cautiously draw some very prelimi-
nary conclusions. Consider the hypothetical case that x (and A) does not depend on T'
i.e., Kp = Kt = K, while v, 8 vary strongly. Then Fy = 1 for any distribution of the tem-
perature drops between top and bottom BL. Since for constant k there is no additional
curvature, the temperature profile will not lose its linear form in the BLs under NOB
effects. Nevertheless, A\’ can still be different from A{!, resulting in T, # T),,. As long as
the sum of the new BL thicknesses will be the same as it was before, i.e., under OB condi-
tions, F is equal to Fy = 1. This immediately gives Qnos = Qo or Nunyos = Nuos,
i.e., the heat flow will not change despite T, # T),. The shift of the bulk temperature
from T, to T, is the sole effect of the strong variations of v and 3, but Nu need not see
this if « is T-independent.

If, on the other hand, x depends on T, there is additional profile curvature which will
lead to a change of the heat flow Q. It seems as if F5 takes care of that while still F; = 1.
Then the non Oberbeck-Boussinesq heat current @ can be calculated solely from the
material properties and the temperature drops Ap and A4,

Qnos _ Nunop ., KpAp + Kl (4.6)
Qos  Nuop =~ kmA ' '

This guarantees the robustness against NOB effects, because the linear term in the nu-
merator is k,, A and the cubic terms lead to corrections of order A? for the Q-ratio.

In the case of a curved profile the supposed condition F; = 1 could mean that the
value of T, has to adjust itself such that the sum of the BL thicknesses is invariant, i.e.,
that eq. (4.5) holds. The volume of the turbulent bulk then is invariant under deviations
from OB conditions, only its time averaged temperature T, takes notice of the NOB
conditions and deviates from T},. Certainly one has to check in further experiments (or
with theoretical argument) if the constraint Af! + Af! 22 2)\%  also holds for other liquids
than water in order to validate our finding. We do not know a physical reason why this
should be the case in general; it may be incidental for water in the temperature range
under investigation.

For a more thorough understanding of the robustness of Nu and also Re against NOB
corrections more theoretical insight into the mechanism of the heat transport is required.
Therefore we next consider RB convection models. We shall start with the first attempt
to explain NOB effects, namely with the model of Wu and Libchaber (1991). It will
turn out that their basic assumption is not consistent with the new data. We then, in
Section 6, extend the Prandtl-Blasius boundary layer theory to 7T-dependent material
parameters. It turns out that this can explain the experimental observations rather well.
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5. Wu-Libchaber model for NOB effects

Wu & Libchaber (1991) and later Zhang et al. (1997) have studied the influence of
deviations from OB conditions, both experimentally and by developing a model to cope
with NOB effects on the Nusselt number. Their model extends the ideas of the Chicago
scaling model for RB convection (Castaing et al. (1989)) by allowing for different temper-
ature drops Ay and A; at bottom and top. We shall briefly summarize the Wu-Libchaber
(WL) results as far as relevant here, in our notation.

WL also use eq. (2.5), Ay + Ay = A. Different top and bottom temperatures imply
different thermal boundary-layer thicknesses, which they introduce by employing heat
flux conservation

Ap Ay
Q=M= Ayt
These BL thicknesses A ; are defined in terms of the material properties, taken at the

mean temperatures Ty and T in the respective BLs. These temperatures are T3 = T, +

Gp =Lt and Ty =T, — 5 = LfTe,

Next, temperature scales 6, and 6; are introduced, characterizing the boundary layers
in a different way than by the temperature drops A and Ay, namely

(5.1)

Vi Kj Vi Kg
6= 2"t g =" 5.2

" g B N "9 B A2 (5:2)

From their data (and later from the model of Zhang et al. (1997)) they concluded that
these temperature scales should coincide}. Even more, in the framework of the model
these scales are identified with the scale A, of the temperature fluctuations in the bulk,

0[, == Ht = AC . (53)

These equalities say that the BL thicknesses respond to the different temperature drops
at bottom and top in such a way, that the thermal scales communicate through the
thermal scale in the bulk. From egs. (5.1), (5.2), and (5.3) one obtains

_ﬁ_ﬁﬁ—ﬂ(ﬂfﬁnf))l/g (54)
X At Ag )\5 Kg ,BEV{KZ{ ) )
All material properties are to be taken at the middle temperature of the respective BL.
In eq. (5.4) we have replaced the A-ratio by the k-ratio because in water the additional
factors p, cp are practically temperature independent.

Since the temperatures T; and T3 which are needed to evaluate the material parameters
can be expressed in terms of x, eq. (5.4) is an implicit equation for the temperature ratio
x- It can be solved iteratively (with fast convergence). The resulting Wu-Libchaber xwr,
for the case of water is plotted in Figure 6 for comparison with our measured data.
Clearly, xwr is considerably smaller than found in experiment.

What is the origin of this shortcoming of the Wu-Libchaber model? To answer this we
have to check the basic assumption eq. (5.3), on which (5.4) is based, i.e., on

-3
xs =1, where xy = % = Virar Xy = VeRaSr (ﬁ X) (5.5)

’ 0 wvikefy N vikiBy \ kg
This, however, clearly is not the case, as seen from Fig. 11, which shows that yy sig-
nificantly deviates from xs = 1. The idea of equal temperature scales 8, and 6; in the

t In the earlier work Wu & Libchaber (1991) in fact only assumed that 6, and 6; scale the
same, and experimentally they found a ratio 6, /0: # 1, independent of Ra, i.e., A. This, however,
cannot be, as this ratio must become equal to 1 in the OB limit.
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FIGURE 11. The ratios xg (solid), xrs (short-dashed), xu., x# (dashed), for water with
Ty = 40°C and Pr = 4.38 as functions of A (left), and as functions of Ra = A/Ap medium for
the medium cell (right). Deviations from xyx = 1 signal NOB effects. One sees that xg # 1, in
conflict with the assumption of Wu & Libchaber (1991) underlying their model of NOB effects.
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FIGURE 12. The same ratios Xg, XRa, X« and X, as functions of the temperature drop ratio
X = Ap/A¢ = xa for water and T, = 40°C.

bottom and top BLs is thus not consistent with experiment. For easier comparison with
the corresponding Wu-Libchaber plot we show in Fig. 12 all ratios also as functions of x.

Although the basic assumption xg = 1 underlying the model of Wu & Libchaber (1991)
and Zhang et al. (1997) turns out not to be valid for our experimental data for water,
we briefly sketch their derivation of the Nusselt-number modification in the NOB case
further. In order to calculate the Nusselt number, Wu & Libchaber (1991) adopt the
previous hypothesis by Castaing et al. (1989) and assume that the heat flux @ in the
center range is determined by the velocity fluctuation u, and the temperature fluctuations
A, only:

Q ~ pepucA.. (5.6)

With u, ~ v/g98:A.L and with furthermore assuming that the BL temperature scale
0: = 6 is the same as the bulk temperature fluctuation A., cf. eq. (5.3), together with
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Q = AsAy /Ny = AjAs/ g, cf. eq. (5.1), and the notation

ve)"* 1
B A
one finally obtains

3/7 —6/7 2/7 9/7
v, K B 25,
Nu~ [ 22 -m e ¢ 2/7 pp—1/7 .
¢ (v) (n) (ﬂm> (Sf+513> it Prm 9

As in the 1989 Chicago model, one finds the scaling law Nu oc Ra?/7. This scalig law is
not globally valid, cf. Grossmann & Lohse (2000, 2001); Xu et al. (2000) and many other
references. It is nevertheless interesting to consider the change of Nu under NOB effects,

NUNOBl _ (V_m)3/7 (K,_m) —6/7 & 2/7 250 9/7 (5 9)
N'U,OB WL = Ve Ke ﬂm S{ + Sf, ) )

3/7 —6/7
Note that the first three factors in eq. (5.9) F3 = ("—m) , By = (”—’:) ,and Fy =

Ve

S, (5.7)

2/7
(BB—;) only originate from the fact that the Nusselt numbers are given in terms of

Ra and Pr at T, and are nondimensionalised with ,,. These factors are not used by
Wu & Libchaber (1991), as the Rayleigh and Prandtl numbers in the theoretical part
of that paper are defined in terms of T,.. Here we use T, instead of T, as the reference
temperature, because T}, is the external control parameter, while T, depends on the a
priori unknown response of the RB flow to NOB conditions and on the material properties
at this center temperature.

Although basic assumptions to derive it are not valid, equation (5.9) turns out to
describe the measured ratio of the NOB and the OB Nusselt numbers surprisingly well,
see Fig. 13. Here we calculated the ratio Nuyop/Nuop for water in the medium cell as
function of Ra with the help of the experimentally determined function x(Ra) (and not of
xwr)- Not only is the robustness of Nu with respect to NOB effects correctly reflected,
but even the small decrease of Nuyop as compared to Nuopp is given by expression
(5.9). This holds in spite of the disagreement between the experimental and theoretical
x ratio and the violation of the basic assumption x4 = 1 of the model. We conclude that
the value of x has little effect on the NOB corrections to the Nusselt number, which
are robustly very small. A similar conclusion seems to be valid concerning the local
Ra-scaling exponent of Nu, since also 2/7 is not verified experimentally.

Let us look at the A-dependences of the individual factors of equation (5.9), F3, Fy,

9/7
Fy, and Fg = ( S?-ffs‘g) / in more detail; see figure 14. The last factor Fg again has the
property that only the sum of the bottom and the top layer contributions of the quantity
S appears. Thus, in lowest, linear order in the temperature deviations also here the NOB
effects from the top and bottom BL compensate each other. Indeed, this factor Fy is
nicely described by a quadratic dependence on A, namely by Fz = 1 —3.07-10"5A2. The
other factors F;, i = 3,4, 5, however introduce linear dependences on A.

Since ratios of bottom and top quantities are of particular interest to characterize
deviations from OB conditions quantitatively, x = xa in particular, but also xx, X, X3
(and in the frame of the Wu-Libchaber model also x4), we now check also other such
ratios. Consider first the A or A/Ay, medium = Ra dependence of the ratio of the bottom
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FIGURE 13. Nunos/Nuop versus Ra for water and T,, = 40°C and Pr = 4.38 from our

measurements with the medium cell (circles), from the Wu-Libchaber model Eq. (5.9) (dashed
line) but with the ratio x as measured in our water experiments in the medium cell, and from the
theory of Sect. 6 (solid line). Note the scale on the ordinate, as compared to the corresponding
ordinate scale on the figures for the x’s: The Nusselt number is very robust to NOB effects.

and top Rayleigh numbers xr, = Rap/Ra;, with

96NN, A,

_ ] 1
Ray paven o (5.10)
and Ra; correspondingly. We have
Ra/b -1
L= = = . 5.11
Xka = 3 = XXg (5.11)
The BL thickness ratio in the Wu-Libchaber approximation is x5 = i’j = ”E x - Fur-

thermore, there are various velocity scales in the RB system. Define wy as that velocity

scale in the BL for which buoyancy is of the order of the viscous loss, g 85 Ay ~ vyws/ )\b,
leading to

2

wy _ Berg Av [N 1. .2

e R ol s N (AL <. 5.12

Xo = = B B (/\{ X8 Xy~ X X3 (5.12)

Also of interest is this velocity scale in the boundary layers. In the bottom BL the relevant

length scale is Aj; the relevant temperature difference either is Ay or 6. Defining thus
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FIGURE 14. The individual factors of eq. (5.9) as functions of A for water and Ty, = 40°C:
F3(A) (short-long-dashed), F4(A) (long-dashed), F5(A) (short-dashed), and Fs(A) (solid). The
factor Fs can be fitted by Fs = 1 — 3.07 - 107°A?. This fit is indistinguishable from the curve
itself.

o\ 1/2
Uup = (ﬁEgAb)\E)l/Z and ﬁ/b = (ﬂggab)‘g)l/z = (K_ll—: i_;) one iS led to
1/2
uy, (B )
R ) 5.13
Xu Ug (55 XX ( )
and
m _
Xa = u—: =2 x? X\ (5.14)

Note that i (and correspondingly ;) is the geometric mean of the viscous and the
thermal molecular velocities in the boundary layer, independent of any buoyancy.

We present various of these ratios for the case of water as working fluid in Figure 11 as
functions of A and of A/Ap, mediuvm = Ra. They all show prominent NOB effects. The
Ra-ratio xgr, and also xg have only moderate deviations from the OB value yx = 1. But
apparently they too are not A-independent constants. For better comparison with Wu
and Libchaber’s curves (Wu & Libchaber (1991)) we also present the ratios of interest
as functions of the preferred measure for NOB effects, the BL temperature ratio x = xa
(figure 12).

6. Extension of boundary layer theory to NOB conditions
6.1. Motivation

The previous section has shown the shortcomings of the Wu-Libchaber model in explain-
ing the center temperature T, and thus x in the examined water NOB case. In this section
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FIGURE 15. (Dimensionless) longitudinal velocity ¥' = u,/Unop (left) and temperature ©
(right) profiles for water at T;, = 40° C and A = 40° C in the NOB-case. The center temperature
O, is larger than the mean temperature 6,, = 0.5. The bottom slope-based thermal BL is smaller
than the corresponding one at the top plate, Af* < Ag'.

we will present an alternative theory which will not have these shortcomings and which
will be able to consistently account for all measured NOB relative to the OB data for
water. It is based on the Prandtl-Blasius theory for laminar BLs (Prandtl (1905); Bla-
sius (1908); Pohlhausen (1921); Meksyn (1961); Landau & Lifshitz (1987); Schlichting
& Gersten (2000)), extended to temperature dependent viscosity and thermal diffusivity
(Plapp (1957)); see also Zhang et al. (1997); Wall & Wilson (1997), who considered the
case of temperature dependent viscosity only. The justification to start from the Prandtl-
Blasius BL theory is that for water even for Ra = 10! the wall Reynolds number is not
larger than about 100. Indeed, the Grossmann-Lohse unifying theory of RB convection
(Grossmann & Lohse (2000, 2001, 2002, 2004)), which is able to account for the measured
Nu(Ra, Pr) and Re(Ra, Pr) in a considerable part of the parameter space, employs the
scaling of the Prandtl-Blasius BL theory as a central ingredient, although the layers cer-
tainly show plume separation and therefore time dependence. But they are not yet fully
turbulent and therefore not fluctuation dominated.

In subsection 2.4 we have already addressed how the BL thicknesses will be modified in
the NOB case. We will now calculate the full velocity and temperature profiles and from
those derive the center temperature 7, and thus the ratio x = 2—: (subsection 6.2), which
are found to be in very good agreement with the experimental data. No fitting parameter
has to be introduced. When in addition employing the experimental finding of figure 10
that for water the factor F; within experimental resolution is F; = 1 in the A-range of
interest, meaning that the sum of the top and bottom thermal boundary layer widths
(based on the slopes of the temperature profiles at the plates) remains unchanged in the
NOB case, the theory also gives the measured small Nusselt number reduction for the
NOB case and an at most 0.5% increase in the Reynolds number for the A considered
here, which is also consistent with the experimental data (subsection 6.3). In subsection
6.4 we explore the origin of the NOB corrections by studying hypothetical liquids with
only one of the material parameters being temperature dependent. In subsection 6.5 we
apply our theory to glycerol and make predictions for the NOB effects in that liquid.
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FIGURE 16. (Dimensionless) slope of the temperature profiles in the top and bottom NOB
thermal BLs. The same liquid (water) and parameters T, and A as in figure 15 is chosen.

6.2. Viscous and thermal boundary layers with temperature dependent viscosity and
thermal diffusivity

As pointed out in section 2, for water one can assume to a very good approximation that
the fluid density and the isobaric specific heat capacity are constant, i.e., throughout
equal to p, and cp.m,, respectively. In contrast, the temperature dependences of the
kinematic viscosity v(T') = n(T)/pm, the thermal diffusivity (T) = A(T)/(cp,mpm) are
explicitly taken into consideration and calculated according to Appendix A.

In this approximation Prandtl’s equation, on which Prandtl’s stationary BL theory is
based, reads

UgOpy +u,0,u; = 0, (V0O,uy). (6.1)

Pressure contributions are omitted. u, is the horizontal velocity component at the bottom
or top plates in the direction of the large-scale circulation (the wind of turbulence), and u,
is the vertical velocity component. Both velocity components are taken to be uniform in
the lateral, y-direction, i.e., in the direction perpendicular to the wind, and are functions
of z and z only. The following boundary conditions apply:

Um(SL’, 0) = 0; (62)
uz(z,0) =0, (6.3)
Ug(z,00) = Unos- (6.4)

The longitudinal asymptotic velocity Uyop outside the viscous BL is identified with the
wind of turbulence. Note that Uyop is not necessarily the same as Uppg, since it may
vary with the bulk properties, in particular with 7., and thus with A. Its value is part of
the boundary conditions. For solving the BL equations the only thing which matters is
to fix the asymptotic (z — oc) value of u.(z, z). The difference between Unop and Ups
will be determined by an additional input, taken from an argument beyond boundary
layer theory, namely, the experimental finding that the sum of the physical boundary
layer thicknesses for water has been measured as independent of A.
Analogously, the thermal boundary layer is described by:

Uy0; T + 1,0, T = 0,(kd.,T) , (6.5)
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with the boundary conditions:

T(z,0) =T, or T(z,0) =1, (6.6)
T(z,00) =T,. (6.7)

The two possible boundary conditions describe two plates facing each other, one being
the top plate and the other one the bottom plate. The asymptotic temperature of the
fluid outside of each thermal BL is 7., which under NOB conditions is not the same
as Tp,. Its value is part of the boundary conditions as well and will be determined by
the constraint that the thermal current across the RB container is conserved, as will be
explained below.

Now, the temperature is measured as the deviation from the top temperature and is
non-dimensionalized{ with A,

T-T; T-T, 1

0 = A = A ta- (6.8)
Then ©,, = 1/2 and the thermal boundary conditions for the bottom and top plates
read ©, = 1 and ©; = 0. The central new element as compared to the standard lami-
nar BL theory is that both the kinematic viscosity and the thermal diffusivity are now
temperature dependent — in dimensionless form 7(0) = v(T) /vy, and £(0) = &(T')/km,
respectively, giving rise to extra terms when performing the z-derivatives on the right
hand sides of eqs. (6.1) and (6.5), respectively.

We now reduce egs. (6.1) and (6.5) to ODEs by introducing a stream-function ¢ and
then by employing its self-similarity under x and z changes. A stream-function ¢ can
be introduced because Prandtl’s BL theory deals with two-dimensional, incompressible
flow. It satisfies u, = 9,9 and u, = —0,%. In analogy with the OB-case, we introduce
the transverse length-scale {yop:

[z v,
y4 = . )
NOB Unos (6.9)

This length scale is defined in terms of the asymptotic velocity Uyop as the velocity
scale, since this choice guarantees that the boundary condition for the stream-function
will always be ¥'(o0) = 1, independent of A. As Unop is a priori unknown, so is £yoB-
Next, the similarity variable £ is introduced,

_ UnoB _ 2
€= 2[5 = (6.10)

The stream function ¢ (z, z) is assumed to depend on this (x, z)-combination only, imply-
ing a self-similar solution. As in the standard Prandtl theory, ¢ is non-dimensionalized
as

Y(z, 2
(&) = TN
{noB UnoB
With this nondimensional self-similarity ansatz for the stream function one finds from

the Prandtl equation (6.1) the ODE

(6.11)

17\1:”’+(%\IJ+5—(';®’) v'"=0. (6.12)

t Distinguish O from 0, the temperature in K as measured from the chosen reference tem-
perature, usually T,,, introduced already above.
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The boundary conditions are

T (0) =0, (6.13)
T'(0) =0, (6.14)
T'(00) = 1. (6.15)

Note that the velocity profile ¥/ = u,/Unop depends explicitly on viscosity and im-
plicitly on the thermal diffusivity (since the © profile depends on Pr, as will be shown
below, cf. eq.(6.16)). Therefore, the solution of the dimensionless boundary value problem
(6.12)-(6.15) is monuniversal. Namely, it depends on the material parameters and their
respective temperature dependences.

Correspondingly, from the temperature equation (6.5) one obtains for the similarity
function O, describing the temperature field ©(z, z) = ©(£)

1 di
~, n - hathd ! ! —
PAC) +<2PrlI!+d®G)>® 0. (6.16)
There are two possible boundary conditions, either for the bottom or for the top BL
0(0) =B, =10r0(0) = O, = 0, (6.17)
O(c0) = O, . (6.18)

Thus in the RB configuration, each thermal plate is associated with a boundary layer
described by (6.12)-(6.15) coupled to (6.16)-(6.18). Therefore, in principle, it would be
just a matter of integrating the top and bottom BL-equations, as done in the OB-case.
However, the NOB-case has a subtle point: the asymptotic temperature O, = %,
with 0 < O, < 1, is a response parameter, which has not been fixed yet. Therefore, in
order to solve the BL equations, one has first to identify the centre (bulk) temperature
T, and thus the boundary-condition (6.18).

We determine O, by the constraint that the thermal flux across the cell is conserved
and therefore the influx at the bottom must be the same as the outflux at the top,
J(z = 0) = J(z = L). This means

Kp 6ZT|[, = Kt 8ZT|t (619)

or in dimensionless form
ko @} = Ry OF . (6.20)
This determines the bulk temperature ©..

The BL equations (6.12)-(6.15) and (6.16)-(6.18) are iteratively solved until condition
(6.20) is satisfied. Technically, this can e.g. be achieved with a shooting method (cf.
Press et al. (1986)). The solution gives the center temperature T, (shown in figure 5),
or alternatively the temperature drops A; and Ay (shown in figure 4) over the top and
bottom thermal BLs and of course their ratio x (shown in figure 6). All these theoretical
results are in good agreement with our measurements. We stress that the computation
is based on two ingredients only: (i) the dimensionless BL-equations, (6.12)-(6.15) and
(6.16)-(6.18), assisted by the given temperature dependences of the fluid properties and
(ii) the conservation of the thermal current. No additional input or fitting parameter is
needed.

The solution of the BL equations also gives the dimensionless velocity and temperature
profiles, see figure 15. Both the kinetic and the thermal bottom BLs are thinner than
the respective top BLs, as already argued in section 2 for the thermal BLs. In the right
panel of figure 15 the difference in the slope-based thermal BL thicknesses A’ and Ag!
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FIGURE 17. RenoB/Reop versus A for the medium cell with T, = 40°C and Pr = 4.38 from
the theory of section 6. Note the scale of the ordinate, as compared to the ordinate scale in
the figures for the x’s: Also the Reynolds number is very robust towards NOB corrections. Due
to the deviations from the OB conditions the wind amplitude slightly increases, while the heat
current was found to slightly decrease.

is explicitly shown. It is also seen that O, is larger than ©,, = 1/2. All NOB profiles
are characterized by a pronounced curvature, as also already qualitatively discussed in
section 2. Figure 16 shows the moduli of the dimensionless temperature slopes ©': They
are different at the top and bottom plates and vary strongly with height (z), due to the
temperature dependence of the thermal diffusion coefficient.

The temperature and velocity profiles remain to be measured. Note that the theory
can only predict the shape of the profile including its nondimensional thickness, but not
its absolute, physical thickness, since the yet unknown velocity Unyop (and derived from
this the unknown transverse length-scale £yopg) is involved in the nondimensionalization.

6.3. Application of NOB boundary layer theory to Nu and Re

The lack of knowledge of Unop (and thus of £yog) also is the reason why the Nusselt
number Nuyop cannot yet be calculated. This is of course not surprising as the con-
sidered BL theory does not take notice of the thermal expansion coefficient 3, which is
responsible for the buoyant driving of the flow. We have calculated, instead, the change
of Nunop relative to Nuop due to the NOB influences. The relevant formulas are eqs.
(4.1),(4.2),(4.3). While F5 can be calculated from the nondimensionalized BL theory
immediately, because only nondimensional NOB quantities enter, the ratio of the sum
of the BL thicknesses Fi = 2A%5/(Af! + Ag!), cf. eq. (4.2), contains the length ratio
Lo/fnos = VUnos/Uop. Since the velocities Unyop, Upop feel the buoyancy in the
bulk, they are expected to be influenced by the NOB-changes of the thermal expansion
coefficient from £, to S..

In order to determine the ratio Unop/Uop we consider the thickness ratio Fi, see
eq.(4.2). From our experiments in water we know that in this liquid within experimental
resolution we have F; = 1, i.e., the sum of the physical top and bottom thermal BL
thicknesses remains constant under deviations from OB conditions, see figure 10 in section
4. Therefore we can use Fi, here Fi =1, as an additional ingredient from experiment to
be able to calculate Nuyop/Nuop within the extended BL theory.



Non-Oberbeck-Boussinesq effects in strongly turbulent Rayleigh-Bénard convection 29

Write Fi in terms of the dimensionless thicknesses and the respective length scales,

2 )\ loB ~ UnoB
F, = =298 = F ) 6.21
' A+ At Evos "V Uos (6.21)
Then one has
UnoB Renon (F 1 ) 2
Uos Reop F (6:22)

The nondimensional factor Fy = 2 A5/(Aff + A\!) is fully provided by the Prandtl-
Blasius boundary layer theory, namely by the integration of (6.12)-(6.15) together with
(6.16)-(6.18). F is taken as an input from experiment, here F; = 1. Then eq.(6.22)
determines the U or Re ratio.
With the same experimental input of Fy (in particular F; = 1 for the water case), the
Nusselt number ratio follows from the exact relation (4.1),
Nunvos _ 2M3p ki + kel Kt A¢ + KpAp

- : =R F=F= 0T 00 6.23
Nuogp A +AY KmA thee FmA (6:23)

i.e., directly from the results for A; and Ay of the previous subsection. The resulting

dependence of the heat flux ratio on A or on Ra = Bmg[’ A was shown in figure 13, to-
gether with the experimental data. Very good agreement is seen. Not only the robustness
of the Nusselt number towards NOB corrections is found, but even the tiny 1% decrease
of Nunop as compared to Nupp. The Reynolds number ratio Reyop/Reop 13’1_2, cf.
eq. (6.22), is shown in figure 17. Also the Reynolds number turns out to be very robust
towards NOB corrections. It increases by about 0.5% as compared to the OB case. This
theoretical finding also is consistent with our measurements (cf. figure 8), showing less
than 2% variation of Renyop (which is our experimental error bar) due to NOB effects.

6.4. Origin of NOB corrections for x and Nu

In order to shed light on the origin of the various features of the NOB corrections, the Nu
robustness in particular, we now consider the NOB corrections for hypothetical liquids
with (i) ¥(T) as in water, but K = &, being constant and (ii) x(7T') as in water, but v = v,
being constant. The results for x are shown in figure 18. For the ratios Nunyog/Nuos
and Renyop/Reop as displayed in figure 19 we in addition assume that F; =1 also for
the hypothetical liquids. Note that Ay, Ay, x, and F5 can be calculated from the BL
theory without any fit parameter and without any measured data, using only theory and
the given material properties. But in order to determine the Nu- and Re-ratios, we again
have to know Fj. Although obviously F; cannot be measured for hypothetical liquids, we
still assume F; =1 as an extra hypothesis. These calculations with hypothetical liquids
quantify our qualitative discussions of section 4.

From the figures we conclude that T, and thus Ay, A, and x are mainly determined by
the temperature dependence of the viscosity v(T"). The variation of the thermal diffusivity
k(T) with T has only a small influence on these quantities. In contrast, within our theory
the Nusselt number modification under NOB effects is exclusively determined by the
temperature dependence of k(7). As can be seen easily from eq. (4.1), a temperature
dependence of the viscosity v(T') but with k¥ = k,, being constant, has no effect on the
Nusselt number, in spite of the modification of the central temperature (remember always
that F; =1 is assumed).

The physical reason that Nu and Re are so robust under large changes of the material
parameters with the temperature is that F» does not take notice of the linear, dominant
variations of k,v, etc. Fy is affected only by the higher order, nonlinear changes of the
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FIGURE 18. x = Ap/A¢ versus A for the medium cell with T}, = 40°C, but filled with hypo-
thetical liquids. The solid line takes the full temperature dependence of both v(7') and x(7T)
into consideration, i.e., represents real water. The dotted line shows x for a hypothetical lig-
uid with v(T') as in water, but &, being constant. Vice versa, the dashed line shows the ratio
x for a hypothetical liquid with x(T') as in water, but v,, being constant. Only the extended
Prandtl-Blasius BL theory is used, no further experimental input.
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FIGURE 19. Nunos/Nuos (left) and Renos/Reos (right) versus A for the medium cell with
T = 40°C, filled with either water (solid lines) or with hypothetical liquids (dashed or dotted
lines). The solid lines are valid if the temperature dependence of both v(7T') and (T as in water
is taken into account. The dotted lines show the Nusselt and Reynolds number changes for a
hypothetical liquid with v(T) as in water, but k,, being constant. Vice versa, the dashed lines
show these numbers for a hypothetical liquid with x(7T) as in water, but v,, being constant. For
comparison the value Fi = 1 for the factor describing the OB/NOB boundary layer thickness
ratio is used also for the hypothetical liquids.
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material parameters. These are visible as curvatures (or even the changes of those) of
((T) — km)/km, W(T) — Vm)/Vm, etc., as seen in Figure 22. The dominant, linear
contributions in the material parameters cancel by the shift of the bulk temperature
Tm — T.

To understand this cancellation of the bottom and top NOB effects in linear (x A)
order even analytically as far as F» is concerned, we apply a systematic expansion of the
involved quantities in terms of A. We have from Figure 5, caption, that (T, — T,,)/A =
c2A + c3A? + c4A? and from the appendix, eq. (A1) the expansions kps/km = 1 £
ax1A/2+ a,2A%/4 £ a, 3A3/8; here + corresponds to b, ¢ (bottom, top). This leads to

Fy(A) =1+ doA? + d3 A% + dyA* . (6.24)

One easily convinces oneself that the linear terms oc A cancel. The deviation from Fy =1
starts with A?. Between the contributing coefficients the following relations are valid.
G2

dy = 1 — Qg1 C2 ds = —ag,1 C3 , dy = —(aml C4+ Qg3 02) . (625)

With the numerical values for the a,; from table 2 and for the c; from the caption of
Figure 5 one obtains dy = —7.2 x 107K 2, in good agreement to what had been found
from the data for F3, see inset of Figure 10. Both terms in the sum for ds, the quadratic
order k-coefficient as well as the product of the linear order k- times the linear order
TC_AT’“ -contribution are negative and amplify their effects. For the next coefficient one
calculates d3 = 3.2 x 1078 K ~3. The fourth order term d4 consists of the first term only,
since according to table 2 one has a,,3 = 0. This gives dy = —3.2 x 1071°K ~*. Equations
(6.24) and (6.25) give a consistent analytical description of the thermal NOB effects,
connecting k(1) with T,. All these statements also hold for Nuyop/Nuog, as long as
F1 =1, as we have measured for water in the temperature range under investigation.

The quadratic dependence of F» on A is in agreement with experiment (see figure 10)
and has been discussed in section 4. We now also understand what sets the direction
of the NOB correction to the Nusselt number (provided F; = 1): It is the sign of the
sum constituting do = —a.1 ¢2 + ax,2/4. The factor a, 1 results from the temperature
dependence of the thermal diffusivity, while the factor ¢; in addition strongly depends
on the temperature dependence of the viscosity v(T'); it immediately reflects whether T
is larger than T,, (as for water) or smaller. Furthermore, the curvature coefficient a2 of
the thermal diffusivity x(T') contributes to the sign of the deviation T, — T},. For water
both terms in the sum are negative, thus add to the down shift of Nuyop/Nuop. As
emphasized already, the effect is quadratic in A. The linear contributions from the top
and the bottom BL cancel.

The NOB modifications on the Reynolds number Re are more subtle, see figure 19,
right. For water, the NOB effects of a temperature dependent viscosity with a constant
thermal diffusivity (resulting in a slight enhancement of Re) and those of a temperature
dependent thermal diffusivity with a constant viscosity (resulting in a slight decrease
of Re) partly compensate each other, leading to only a tiny net enhancement of Re.
The reason for the enhanced Reynolds number for the case v(T), k = Kk, is the overall
temperature increase in the cell, T, > T,, resulting in a smaller cell-averaged viscosity.
Note again that according to our theory this does not have any effect on the Nusselt
number. The reason for the reduced Reynolds number for the case k(T"), v = v, is less
obvious. Technically, it results from Fy > 1, i.e., 2% > Af' + A¢'. But remember that
for this discussion we have always made the assumption F; = 1.
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FIGURE 20. (a) The temperature shift in the center of the cylinder filled with glycerol at
T, = 40°C as a function of A. Some experimental values measured by Zhang et al. (1997)
are also displayed, although for them constant 7, is not valid. Thus the data can only serve
for an approximate comparison. This still is reasonably promising. (b) The ratio x = Ap/A¢ as
a function of A for glycerol; T, = 40°C. Note that T, — T}, is much larger (about 6.5 K) in
glycerol than in water (about 1.8 K), both for A = 40 K. The temperature drop ratio x for
glycerol varies by about 50%.
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FIGURE 21. The change of the Nusselt number for glycerol under NOB effects. Since no experi-
mental information on the ratio of the total boundary layer thicknesses F1 = 208 5/(Ag! + Ag')
is available, we have plotted the Nusselt number divided by Fi, i.e., the factor F». If we assume
that Fi = 1 as in water, then the NOB shift in the Nusselt number will be tiny, as anticipated
from the hypothetical liquid with temperature dependent v(7') while  is (for glycerol only
nearly) constant.

6.5. NOB effects in glycerol

We now theoretically consider NOB effects for another liquid besides of water, namely
for glycerol. The reason is to have an independent test for our theory, as there are data
for T, — T,, available from Zhang et al. (1997). In that work also Nusselt numbers are

50
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offered, but not the ratio Nunyop/Nuop. The glycerol case is a particularly interesting
one, because this liquid shows a dramatic change of viscosity v(T) with temperature,
while the T-dependence of the thermal diffusivity x(T') is rather weak. Thus glycerol is
a liquid that approximately behaves like one of the hypothetical liquids studied in the
previous subsection.

In the RB cell of Zhang et al. (1997), the mean operating temperature for glycerol
is sometimes near T,, = 40°C but is not kept fixed as in our measurements. With
A =10 K and their cell height L = 18.3 c¢m (cubic box, so I' = 1) the Rayleigh number
is Ra = 1.29 x 107. The temperature dependences of the material properties for glycerol
are known and can be found in appendix A, table 3. As we have detailed above, within our
BL theory the knowledge of the temperature dependent viscosity »(T') and and thermal
diffusivity «(T") is enough to calculate the shift of the center temperature T, — T), as a
function of A, without any fit parameter. Our result is shown in figure 20 and compared
with the measured data from Zhang et al. (1997). Indeed, our theory is able to reasonably
describe the considerable temperature deviation of 7T, from T, also for this case. Fig.
20b shows the corresponding temperature drop ratio x = Ap/A¢. The increase in T, as
compared to T3, and therefore the deviation from x = 1 is much more pronounced than
for water, shown in Fig. 6. Instead of x = 0.83 for water we find x = 0.52 for glycerol,
both for A = 40K. Apparently the deviations from linearity are also stronger than for
the water case in Fig. 6.

We finally present the Nusselt number ratio under NOB in terms of F} in Fig. 21. Note
that Fj is still unknown for glycerol. If also for glycerol the conservation of the sum of
thicknesses of the thermal BLs under NOB deviations held, F; = 1, the plot would show
the Nusselt number ratio directly. For a temperature difference A = 40K the relative
shift is less than about 0.3%, even much less than for water. This is in agreement with the
small temperature dependence of k(T"), which leads to a factor F» = o % + = % ~ 1.

Clearly, it is of high interest to measure the Nu shift under NOB conditions also
in glycerol, in order to confirm whether the BL layer thickness sum rule holds. With
the then available function F; also the Reynolds number modification, Renyos/ReoB,
follows. Both will shed light on the respective roles of the temperature dependence of
viscosity v(T) and thermal diffusivity x(7"). Also the nontrivial validity of the extended
Prandtl-Blasius BL theory for the NOB case could be confirmed.

7. Summary and conclusions

We have measured NOB effects on the ratio x of the bottom and top temperature
drops across the thermal BLs and on the Nusselt number Nu and the Reynolds number
Re for turbulent Rayleigh-Bénard convection in water. While x can vary considerably (up
to 20% in the considered case), the NOB effects on Nu and Re are very small, resulting
in only a less than 2% reduction of Nu and no modification of Re within experimental
accuracy (which for Re-measurements is about 2% ). This holds even though the viscosity
and the thermal expansion coefficient vary by more than a factor of two between the top
and bottom plates. We have theoretically accounted for this robustness of Nu and Re
towards NOB effects: The NOB corrections from the top and bottom BLs compensate
each other in first order by properly shifting the center temperature 7,,, — T,.. We believe
that this conclusion is valid beyond the assumptions of constant ¢, and p. We also expect
that it will hold more generally than for water at least for all systems with Pr larger
than 1. Then always the thermal boundary layers are nested into the kinetic ones. The
robustness of the Nusselt number against NOB effects because of the cancellations will
thus hold more generally. We have also shown that one of the basic assumptions of the
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NOB model by Wu & Libchaber (1991) and Zhang et al. (1997) is in conflict with the
experimental data. Nonetheless, also that model shows the robustness of Nu towards
NOB effects.

An interesting, unexpected and nontrivial finding for water as the working liquid is
the observation, that in the considered temperature range the sum of the slope based BL
thicknesses Ag' + Af' seems to be invariant under deviations from OB conditions. Within
experimental precision it turned out to be constant for even strong NOB effects. The
ratio of the NOB and OB heat fluxes Qnop/Qop can then be calculated on the basis
of the thermal diffusivities kp and k; at bottom and top and on that of the measured
or theoretically evaluated (BL theory) temperature drops Ay and Ay, cf. eq. (4.6). This
ratio is of second order in A and thus in NOB effects.

The employed theory is based on the Prandt-Blasius theory for laminar BLs, extended
to temperature dependent viscosity and thermal diffusivity. Remarkably, we do not have
to make any use of the temperature dependence of the thermal expansion coefficient. The
theory gives a center temperature 7 in very good agreement with the experimental data,
without employing any free parameter. With the experimental finding that for water the
sum of the slope based thermal BL thicknesses seems to be invariant under deviations
from OB, the theory also gives Nusselt and Reynolds number modifications consistent
with the measurements. The theory offers the opportunity to discuss hypothetical liquids
with only one material parameter being temperature dependent, thus shedding light
on the mechanism of the NOB corrections: Whereas the NOB correction on x mainly
originates from the temperature dependence of the viscosity, the NOB correction on the
Nusselt number exclusively (if F; = 1) originates from the temperature dependence of
the thermal diffusivity.

To further validate our theory, a next step would be to extend the experiments on
Rayleigh-Bénard flow under NOB conditions to other liquids, such as e.g. glycerol.

An exciting extension would be to analyse NOB effects also for gases, in particular for
those close to the critical point. Then one may have to take Schwarzschild corrections into
consideration. Here an interesting case is when the mean temperature is above the critical
temperature and the mean density corresponds to the critical value. In that case, the top
and bottom boundary layers are nearly symmetric, but nonetheless the fluid properties
can vary significantly within them (Oh et al. (2004)). These interesting problems go
beyond the scope of the present paper. From a theoretical point of view the challenge in
the analysis of NOB effects in gases lies in the temperature dependences of the density
and the specific heat capacity, which can be and have been considered as constants in
the present paper.

The role of the Grossmann-Lohse theory in the present context is to give Nu(Ra, Pr)
and Re(Ra, Pr), as long as A is small enough to allow neglecting NOB effects. We have
seen that in experiment A needs not be too small for OB conditions to hold due to the
small effects of deviations from OB conditions, the corrections increasing only oc AZ.
While in the present paper the BL effects have been dealt with, an extension of GL
theory allows to calculate also Nunyop and Reyop immediately, without further input
from experiment. This extended GL theory will be addressed separately. It in particular
takes the T-dependence of the expansion coefficient (T) into account explicitly.
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FIGURE 22. The relative deviations (X — X,,)/X,, of water properties X from their values
X, at Ty, for T,, = 40°C . Solid line: isobaric thermal expansion coefficient 8. Long dashed
line: kinematic viscosity v. Short dashed line: thermal conductivity A. Dash-dotted line: Prandtl
number Pr. Dotted line: density p.
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Appendix A. Physical properties of water and glycerol
The relative deviations (X — X,,)/ X, from their values X, at T),, = 40°C of vari-
ous physical properties X of water at a pressure of one bar are shown in Fig. 22. One
sees immediately that the properties with significant temperature dependences are the
thermal expansion coefficient 8 and the kinematic viscosity v. The cubic polynomial
X-X,
Xm
gave a good fit to the data for each property. In some cases a cubic term was not even
needed. The coefficients as well as the values of X,,, for T,,, = 40°C are given in Table 2.
For the glycerol case, the dramatic change of viscosity with temperature (as shown in
Fig. 23) required a fifth-order polynomial
X-X,
Xm

The coefficients as well as the values of X,, for T}, = 40°C are given in Table 3.

=a1(T —Tw) + a2(T — Tp)? + a3(T — Tp)? (A1)

=a1(T—Tm)+a2(T—T)* +as(T —Tp)2 + as(T —T) + a5 (T —Trn)®. (A2)
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X Xm ai as as
107*K~'|1075K~? |10 8K 3

p/10%kg m™® [0.9922| —3.736 | —3.98 -
cp/103T kg™ K1 |4.1690| 0.084 4.60 -
B/107*K~' |3.8810| 195.0 | —159.8 207
A/Wm™ K™' ]0.6297| 21.99 —17.8 -
k/107m2s™!  |0.1528| 23.52 —14.9 -
v/107%m2s™1  |0.6690| —175.9 295.8 —460
Pr 4.3820| —197.6 370 —618

TABLE 2. The values of X, at T,, = 40°C of several properties X of water and the coefficients
obtained by fitting the polynomial eq. (A1) to data over the range 10 < T' < 70°C.
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FIGURE 23. The relative deviations (X — X,,,)/ X, of glycerol properties X from their values
X, at Ty, for T, = 40°C . Upper plate: Solid line: isobaric thermal expansion coefficient 3.
Short dashed line: thermal conductivity A. Dotted line: density p. Double-dashed dotted line:
specific heat capacity c,. Lower plate: Solid line: kinematic viscosity v. Dotted line: Prandtl
number Pr. Note the very different scales in the upper and lower plates.
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X Xm a1 a2 as a4 as
107K 107K ~2 |10 8K~3|107°K~* |10~ 12K ~®

p/10%kg m™® 1.2477 | —4.789 | —0.3795 - - -
cp/10%J kg™ K~' | 2.5108 | 22.511 -
B/107*K! 4.7893 | 20.639 4.664 1.0757 | 0.2540 -
AJ103Wm 'K~ | 2.9351 | 3.863 - - - -
k/107%m2s™! | 0.0937 | 13.858 3.913 | —0.7577 — -
v/107%m?s™ ' | 238.71 | —702.83 | 2,393.1 |—6,923.0 | 33,131.3 |—71,517.5
Pr 2,547.9 | —687.68 | 2,325.9 | —6,646.3 | 30,875.9 |—65,996.9

TABLE 3. The values of X,,, at T}, = 40°C of several properties X of glycerol and the
coefficients obtained by fitting the polynomial eq. (A 2) to data over the range 10 < T' < 70°C.
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