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Abstract:

Physical principles underlying biological pattern formation are discussed. In
particular, the combination of local self-enhancement and long-range
(“lateral”) inhibition (Gierer and Meinhardt, 1972) accounts for de-novo
pattern formation, and for striking features of developmental regulation such
as induction, spacing and proportion regulation of centers of activation in
tissues and cells. Part I explains physical principles of spatial organisation in
biological development. Part II demonstrates in mathematical terms that and
how short-range activation and long-range inhibition are conditions for the
generation of spatial concentration patterns. The conditions can be expressed
in terms of ranges, rates and orders of reactions. These conditions, in turn,
can also be derived by analysis of dynamic instabilities by means of Fourier
waves, showing the neither obvious nor trivial relation between the latter
approach and the theory based primarily on autocatalysis and lateral
inhibition.
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Parr 1

Physical Prineiples of Spatial Organization.

1. — Morphogenesis and molecules.

Nature produces many types of spatial structures which evolve de novo
from nearly uniform initial conditions: stars and galaxies, waves and clouds,
crystals, mountains, valleys; but the most specifie, most impressive generation
of spatial order is the development of the animal from the egg cell. This process
ghares some features of «self-generation » with the inorganic domain, but it
is quite unique in that structural characteristics are reproduced in minute
detail under the control of the genes. It is for this reason that elephants have
innumerable spatial properties in common, whereas clouds share only few.
How can genes determine spatial organization? Genes are themselves spatial
structures, namely sequences of nucleotide pairs. Yet these structures bear
no resemblance to the form of the animal, say a mouse, generated in the course
of embryogenesis. Primarily, genes specify nucleic acids and proteins including
enzymes, receptors and membrane components. They are involved in the com-
plex network of biochemical reactions, which, in furn, lead to spatial order.
In thig process, the relation of genes to their immediate products is much
better understood than the mechanisms by which a set of molecules produced
under the eontrol of genes eventually generates spatial patterns. If we con-
centrate on the latter aspect, this is because it is the more challenging one, not
because we underrate the role of genetic control of pattern formation. The
question is: How can molecular interactions and movements lead to spatial
order in cells and tissues?

Not all scientists will agree that this is an adequate way of stating the main
problem. One may object that, in development, one observes phenomena,
not molecules. Physics encompasses many processes like electromagnetic waves
which are nonmolecular. Is it conceivable that pattern formation iz dume to
some strange physical effect, or even to processes beyond known physical
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laws? Such possibilities cannot be strictly refuted by logical argument. How-
ever, very fow would question that unsolved biological problems, e.g. photo-
synthesis, muscle contraction, or chromosome segregation, have molecular
solutions. Why then maintain doubts with respect to pattern formation?
Everything we know about cells and tissues indicates that their basic prop-
erties can be explained on a molecular basis. We expect this to apply also to
their spatial organization.

2. — Basic physical types of the generation of spatial order.

Several physical mechanisms are conceivable for the generation of spatial
order in cells and tissues. One of them is self-assembly: constituents such as
molecules, molecular compounds or cells may be produced at random positions,
move at random, collide, associate and dissociate until an energctically fa-
vourable, stable spatial arrangement is reached. In the inorganic domain this
occurs during the formation of crystals from molecules in a liquid. In biology,
self-assembly is involved in the formation of many intracellular structures,
such as ribosomes, chromatin and membranes. Even whole cells of different
types can sort out, forming distinctly different layers by self-assembly starting
from random positions. However, the main spatial features, say of a mouse,
are not generated in this way. Rather, cells in different positions of the embryo
develop in different directions from the outset.

A second basic mechanism is a conversion of order in time into order in
space. This occurs if, in a marginal zone of a tissue, cells of different types are
produced in a certain time sequence. Embryological evidence suggests that
time order is involved in pattern formation, but it offen modifies rather than
generates structures. The initial process in the production of a rudiment of an
organ or its substructures appears to be the generation of strikingly different
parts within originally near-uniform cells and tissues. For example, the early
embryo becomes subdivided into ectoderm, mesoderm and endoderm. A par-
ticularly suitable system for studying such internal self-organization is the
regeneration of the fresh-water polyp hydra. Sections of its body column
regenerate a new animal with head, gastric column and foot. This process does
not require cell proliferation or growth; originally near-homogeneous tissue is
re-specified, differentiating into distinetly different parts.

This «self-organization » can be described as a de novo generation of unequal
distributions of molecular components within a given spatial domain of a tissue.
Many embryological structures can be traced back to invisible primary pat-
terns. For instance, if a piece of hydra tissue is allowed to regenerate, the
future head area newly acquires head-activating properties only a few hours
after the onset of regeneration, and much before a new head is actually formed.
This can be shown by the capacity of the future head area to induce a new
head upon transplantation into the body column of another hydra. This
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evidence demonstrates that the primnary event is the formation of an (invisible)
spatial distribution of a physical property which then activates the formation
of visible struetures. There is no doubt about the existence of such primary
patterns which are often called «pre-patterns» or « morphogenetic fields »
specifying « positional information » [1]. Though their chemical nature is not
yet known, one expects that such fields are spatially distributed concentrations
of morphogenetic substances. The simplest conceivable field would be a mono-
tonic concentration gradient, eliciting concentration-dependent and thus po-
sition-dependent responses of the cells. Obviously, the notion of morphogenetic
fields does not, in itself, solve the problem of pattern formation; rather, this is
shifted to anotheor level: How might one explain by physico-chemical schemes
the generation of reproducible gpatial distributions of morphogens from near-
uniform conditions?

Several aspects of this question will be discussed: Do chemical reactions
and molecular movements in cell plasma, membranes and intercellular space
suffice for the generation of spatial concentration patterns? If yes, can the
mechanism be deseribed in terms of simple physical and mathematical prop-
erties of molecular systems? How do they relate to the facts of molecular
biology? Are they suitable to explain experimentally observed features of
embryological development and its regulation?

The simplest type of molecular movement is passive random movement
which can be described by diffusion terms. In most cases diffusion tends to
smooth out and destroy patterns rather than generate them. Nevecrtheless,
reaction-diffusion systems are also capable of generating patterns de novo under
certain conditions. This was first shown by RASHEVSKY [2], using a crude
two-component model in a paper rarely quoted today. The more general con-
tinuous theory was introduced by TURING [3], and the mathematical analysis,
which includes nonlinear features, has been developed by several groups, pat-
ticularly by PRIGOGINE and Ntooris {4] and their co-workers.

We can now ask: What are the conditions of pattern formation in systems
of interacting molecules? One requirement emerged gradually and has a long
record in the literature: the generation of structures has sclf-enhancing features.
This principle is implicit in embryological thoughts of Spemann, Kiihn and
Waddington. It can also be found in the generation of structures in inorganic
and social domains. Crystals and clouds develop by self-enhancement from
minute «nuclei». Economic inequalities may also be autocatalytic, as ex-
plained by MaRrX for the accumulation of eapital, or by MYRDAL in his analysis
of the cauges of underdevelopment. On the other hand, autocatalysis by itself
will not lead to structure but to an overall explosion. The formation of a stable
pattern requires that autocatalysis is coupled to another effect, that of «lateral
inhibition » [6]; its features can be analysed and explaired by introducing the
notion of «range ».

‘We define «range » as the mean distance # between the production and the
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decay of a molecule. If a molecule’s diffusion rate is D (dimension em?/s), and
if its decay rate is » (dimension 1/s), then, according to the rules of physical
chemistry, its mean range r is of the order of V' D[x (dimension cm). This
relation converts reaction constants such as D and % into spatial parameters
with the dimension of distance, width, or length. In some types of mathemat-
ical analysis such parameters are introduced as wavelengths, but their im-
mediate molecular meaning is the mean distance betweon the position where
a molecule is found during its lifetime and the position where it was produced.
This notion of range is very useful for specifying conditions of pattern for-
mation. Spatial pattern can be generated by two suitably coupled reactions:
one autocatalytic, the other cross-inhibitory. Direct inhibition can be sub-
stituted by depletion of a substance required for and consumed by activation.
The inhibitory reaction must be faster than the activating one. The two most
specific and least trivial conditions for pattern formation depend upon ranges:
The range of activation must be sufficiently small as compared to the total
field size; and the range of inhibition must be sufficiently large as compared
to the range of aefivation. If these conditions are met, small random or
systematic advantages within an otherwise uniform distribution are self-
enhancing. Autocatalytic activation at one location causes deactivation nearby
because the inhibitory effect which originates in the activated area extends
into a wider range. Pattern formation proceeds until a stable distribution is
reached. In the simplest ease this is a graded distribution, but symmetric
and periodic patterns can be formed by the same general type of mechanism
with different values for ranges and rates. Range of activation specifies the
size of the activated area, and range of inhibition codetermines whether sec-
ondary areas of activation are formed, and, if yes, how they are spaced. Mech-
anisms of this type may generate patterns not only in multicellular tissues, but
also within individual cells.

The general conditions for pattern formation mentioned are consistent
with many different molecular mechanisms, and quite simple schemes com-
bining known features of molecular biology would suffice. We have shown [6]
that the conditions listed above are mathematically necessary for the simplest
two-factor systems. The same general considerations also apply to multi-
component systems if they can be divided into subsets of molecules with short
and long ranges. Then, activation and inhibition are system properties of the
respective short-range and long-range subsets, and not of individual substances.
These mathematical aspects are the subject of part II of this lecture.

3. - Pattern formation, pattern recognition and the principle of «lateral inhi-
bition ».

The principle of long-range inhibition (coupled to short-range autocatalytic
activation) was suggested to us by certain analogies between pattern formation
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and pattern recognition. In the latter domain, KUFrLER [7] and others de-
monstrated that lateral inhibition is crucially involved in edge enhancement
and other phenomena of visual perception. In the visual system of the brain
activating connections of short range and inhibitory ones of longer range were
detected between nerve cells. While the physical mechanisms of transmission
of eleetrical signals across neural synapses bear no relation to reaction-dif-
fusion mechanisms, the formal relations between lateral inhibition in pattern
recognition by neural networks and long-range inhibition in biochemical
reaction networks are close. In both cases, local activation is enhanced, whereas
activation in a wider environment is repressed. The formal relationship may
even be of interest for a theory of aesthetic experience. Patterns which are
produced by simple molecular mechanisms may also be recognized by simple
processing of information in the brain. For insfance, hidden regularities in
seemingly complex patterns, such as second-order statisties (« granularity ») in
textures, are easily produced by autocatalysis and lateral inhibition. Such
textures are known to be detected by «immediate perception » [8] in fractions
of a second and without conscious thought.

4. — Developmental regulation.

In simple biological systems, such as cellular slime molds or hydra, there
is good experimental evidence for the involvement of morphogenctic sub-
stances in pattern formation. However, the assays available do not yet allow
us to construct the complete network of reactions which generates spatial pat-
terns; therefore, the molecular mechanisms arce bagically still unknown.
Nevertheless, there is a well-defined and impressive set of experimental facts,
some of them of a quantitative nature, to test theories and models: the unique
features of developmental regulation [9-12]. These include polarity (the ca-
pacity of slight asymmetric cues to reliably orient developing structures),
induetion (the capacity of weak localized external or internal signals to initiate
the all-or-none formation of a defined, spatially confined structure, such as a
second head of a hydra), inhibition (such as the prevention of the formation
of a secondary strueture in close neighbourhood to a primary one, a principle
which also explains the regular spacing in periodic arrangements including the
pattern of leaf rudiments in plants), symmetry changes (such as the formation,
under certain circumstances, of a hydra with a head in the middle and feet
at both ends), and, last but not least, proportion regulation (such as the capacity
of part of a sea urchin embryo to form a whole animal at reduced size, or of
a small piece of hydra tissue to regenerate a whole animal with a correspondingly
small head). It is this set of properties, in particular proportion regulation,
upon which vitalist thinkers based their claimsg that «normals physies is
ingufficient for an understanding of biological development. Modern systems
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theory shows, however, that these self-regulating «holistic » properties are
within the scope of conventional physical laws and processes, emerging as
system properties of suitable reactions. Our analysis of pattern formation by
short-range activation and long-range inhibition (ref.[5]; for review see
ref. [6,11]) demonstrated that all regulatory features can be explained in a
rather straightforward manner, independent of the details of the molecular
mechanisms involved. The simplest form of a concentration pattern, formed
spontaneously if a tissue grows beyond the lower limit specified by the range
of activation, is a monotonic gradient which is capable of specifying «po-
sitional information » [1] across the field. Reproducible orientation, that is
polarity of such fields, is due to the fact that any asymmetric initial activation,
however slight, can reliably orient an asymmetric pattern such as a graded
distribution. Induction occurs if a small loeal stimulus initiates the formation
of a centre of activation. A sccond centre may be induced out of the range
of inhibition of a primary one. The range of inhibition is capable of determining
regular spacing in periodic structures. Within fields considerably larger than
the range of activation, graded as well as symmetric distributions can be gen-
erated, depending on boundary conditions.

Proportion regulation occurs if activation is saturating and range of in-
hibition exceeds the total size of the fleld; under these conditions, activation
invades the field until a certain level of inhibition is reached which stops further
invagion. This occurs at a fixed proportion of the activated area in relation
to total field size, thus leading to proportion regulation. While this simple
mechanism leads fo proportion regulation with respect to two subareas only,
other models are capable of proportion regulation for all parts of a field specified
by a graded distribution of morphogens [6]: their steepness adapts to total
field size. This occurs if gradient formation is initiated by gradually closing
intercellular junctions between cells of the tissue and thus reducing diffusion
constants of activators and inhibitors. At a eritical stage when range of ac-
tivator is sufficiently small to destabilize the initially near-uniform distribution,
a gradient is formed. If this gradient elicits a signal across the field stopping
further closure of junctions, the gradient becomes stabilized shortly after its
formation. Such mechanisms would lead to strict proportion regulation in-
dependent of field size. They correspond to an adaptation of the « metric»
of the tissue, fixing ranges of activation and inhibition in relation to total
area of the field: in a small field, the mean distance between production and
decay of the molecules is correspondingly small because a smaller part of the
junctions between cells is open. Since such mechanisms affect the ranges of
molecules in general, secondary patterns formed at later stage are also regulated
in proportion to the entire area; in particular, spacing of periodic structures
could adapt to total field size, a feature which is difficult to account for by
other models. Whether such proportion regulation is realized in biological
development—for instance, in the regulation of the spacing of somites, with
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small sizes of somites in vertebrate embryos of reduced size—is an open ques-
tion.

In any case, pattern formation requires certain nonlinear features of auto-
and cross-catalysis. These features lead to stable spatial patterns. Their
orientation may be determined by pre-existing asymmetric spatial cues, but
their forms are essentially determined by the physico-chemical characteristics
of the pattern-forming system, namely the ranges of activation and inhibition.
In this way, a basic logical requirement for biological pattern formation is
met: The pattern formed in each generation is not hidden in initial spatial
distributions within the early oocyte or embryo, but generated de novo in each
generation.

5. — Pattern formation within single cells.

Pattern formation by autocatalysis and lateral inhibition appears to occur
in the course of development within multicellular tissues (mostly as two-di-
mensional fields in cell sheets) but also within single cells. There is no difficulty
in applying the theory to membranes and plasmas of individual cells [5, 13].
For instance, allosteric enzymes, if activated by their products, could give rise
to the autocatalytic feature required for pattern formation, and inhibition
could be due to depletion of the precursor of the enzymatic product. Range
of activator—the mean distance between production and decay—would have
to be small compared to the size of the cell. Then, a focus of activity can be
produced which may be oriented by slight asymmetric cues from the environ-
ment and which may lead to asymmetric development of the cell, to systematic
orientation, directed movement, oriented cell division and other polar features.
On the other hand, it is to be emphasized that polar development of single
cells can have other causes as well. In particular, cells differ from tissues in
that they are produced as potentially asymmetric structures from the outset:
the plane of cell division distingnishes part of each daughter cell; this would
suffice for explaining a polar development of the cell. Other mechanisms for
polar development of single cells may involve directed pumping mechanisms
across membranes, whereas such mechanisms seem to be less likely for pattern
formation in animal tissues.

6. — Cell response to primary patterns.

Morpbogenetic fields are mediators of pattern formation, but real spatial
structures result only from the response of cells to such fields. Local con-
centrations of morphogenetic substances are expected to give rise to local
responses of cells, such as proliferation, differentiation, shape changes, orienta-
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tion, movements and death. Two types of responses are of particular interest:
the cell differentiation and the change of cell shapes. These, in turn, determine
structures and forms of tissues, organs and organisms.

Cell differentiation is the transition of the cell from one stable state to
another. It is a feature of many interacting systems that a transition between
stable states may occur in response to a transient stimulus above a certain
threshold, the light switch being a simple example. Correspondingly if cells
in a tissue respond to the concentration of a morphogenetic substance above
a certain threshold by differentiation in a certain direction, then a graded dis-
tribution of a morphogen can give rise to & subdivision of a tissue into two distinct
regions with sharp boundaries. Multiple thresholds would lead to more refined
subdivisions. Once a primary division is formed, new morphogenetic effects
may arise from boundaries between subareas, or within individual subareas,
leading to more refined structures. Aside from threshold effects, graded dis-
tributions of morphogens may also affect the probabilitics of cellular dif-
ferentiations, leading to cell distributions which are smoothly graded within
the tissue.

In the generation of biological form, many different mechanisms are involved
in a complex fashion. Nevertheless, in many cases, defined biological struc-
tures can be traced back to an elementary process, namely the evagination or
invagination of an initially almost flat cell sheet at a well-defined position.
Two aspects of this process may be distinguished: aectivation of a defined sub-
area of a cell sheet, and the generation of curvature leading to invagination
of the activated area. Spatially confined activation can be due to a morpho-
genetic field generated by internal processes within a cell sheet, leading to
a localized concentration peak. In the coursc of embryogenesis, activation
may also be induced by contact of a given area of onc tissue with another.

How can local activation affect cell and tissue shapes? The generation of
tissue form often shows self-regulatory features (such as reversibility of certain
types of inhibition) suggesting that cell form corresponds to a stable steady
state of processes within the cell and on its boundaries. These include insertion,
removal, production and decay of membrane components, as well as the for-
mation and disassembly of intercellular fibres, intracellular fibres and of the
structures mediating the anchorage of fibres within membranes. Contraction
and expansion of fibres are also expected to oecur. Probably all sueh mech-
anisms interact with each other, and codetermine cell form in tissues. Models
relying exclusively on fibres (by postulating that cells change shape only be-
cause fibres near a surface contract) or on adhesive membrane-membrane
associations arc probably oversimplified and insufficient. Form is a system
property involving, in most cases, the dynamiecs of fibres as well as membranes.
Novertheless, a simple physical principle can be stated for tissue evagination
in the gencration of biological structures: If the sheet shows an inside-outside
asymmetry, a local activation of a subarea of the cell sheet will, independent
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of the details of the mechanisms involved, give rise to an asymmetric response
with different effects on the inside and outside boundary of the cell gheet,
This, in turn, leads to local bending moments, curvature and thus to new
structures. Shell theory, as developed by engineers and architects, is suitable
for model calculations on the generation of form in sheeted structures [14].
The logical requirement for reproducible evagination (in confrast to random
symmetry breaking with equal chances for evagination and invagination) is
inside-outside asymmetry. This is a biological characteristic of epithelial cell
sheets. It is often directly visible in the microscope, whereas most technical
materials do not show such an anisotropy.

7. — Development of the nervous system.

The most interesting organ is obviously the brain; therefore, the most
intriguing aspect of development is how a neural network is produced during
the course of embryogenesis. The mechanisms involved are understood only
to a very limited extent, but all the evidence suggests that basic principles
for the development of nonneural tissues also hold for neuroembryology.
Originally nearly uniform tissues, often organized in cell sheets, become sub-
divided into different areas and subareas. It is highly probable that each sub-
area acquires different chemical characteristics, either qualitatively or quan-
titatively. In other words, one expects that there are cell and surface markers
characteristic not only for cell types but also for cell position within the nervous
system. The main problem of neuroembryology is connectivity—the generation
of a specific, highly complex pattern of connections between cells which are
not close neighbours. Though part of the connections in higher animals are
formed postnatally and influenced by learning, many features of connectivity
are genetically determined, and are produced in the course of embryogencsis.
How are axons guided toward their targets? It is likely that the markers
characteristic for different parts of the developing nervous system contribute
to the selection of specific pathways by growing axonal processes. Pathway
and target search probably involve fibre-fibre, fibre-pathway and fibre-target
interactions, but it may also be codetermined by the time order of outgrowth
of fibres.

In higher organisms, there are many more nerve cells than genes. Therefore,
the individual neural connection cannot be due to a specific genetic instruction;
instead, genes crudely specify similar repeating substructures; further there must
be genetically encoded rules for the spatial ordering of large numbers of fibres.
A simple example for a topological relation between the order of fibres in the
area of origin and the order of their terminals in the respective target tissue
is the generation of a projection from one area of the nervous system onto another
(as in the connections of retinal cells of the eye with the first relay station in
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the brain such as the tectum in birds, amphibia and fish) [15,16]. Many dif-
ferent fibres have correspondingly different targets; novertheless, a few gpatial
determinants could suffice, because in a projection the spatial orders in target
and source area are closcly interrelated. In terms of information theory, all
that is nccessary arc a few appropriate signals converting the order « please
project from here to there » into chemistry. The mechanism of such conversions
ig one of the challenging problems of neurcembryology. One possibility is
that reliable projections are generated by suitable interactions between axonal
components graded with respect to position of origin and spatially graded
components in target tissue [17].

8. — Morphogenetic fields and the logic of the generation cycle: a summary.

Morphogenesis of an animal i3 the result of many genetically determined
mechanisms and our present knowledge is still very limited. A erucial aspect
for an understanding of the logic and physics of the generation cycle is the sub-
divigion of cells and tissues into different parts. The primary process, the gen-
eration of morphogenetic fields within initially near-uniform cells and tissue,
is proposed to result from short-range autocatalytic activation coupled to
long-range (lateral) inhibition. This notion provides a link between biological
development and its regulation, on the one hand, and the properties of systems
of interacting molecules, on the other.

I would like to summarize the relation of the theory described to empirical
evidence by replying to two typical questions.

i) The theory is about morphogenctic fields, such as gradients, but has
anybody ever observed such a gradient? The answer is «no » for biochemical
identification of the components involved in pattern generation (though this
may change soon with the advance of developmental genetics), but clearly
« yes » for indirect deteetion by transplantation experiments.

ii) The molecular basis of pattern formation is still unknown and the
theory can deseribe, by proper combination of elementary mechanisms, any
pattern; how can it then be supported or refuted by experimental facts at all?
The answer is that developmental regulation, the striking effects produced
upon artificial (mostly surgical) interference with development, is a testing
ground for theoretical concepts. We have shown that the specific features
of developmental regulation are rather straightforward consequences of mech-
anisms of pattern formation based on autocatalysis and lateral inhibition.
This is not the ultimate proof, which could emerge only in conjunction with
further molecular studies. However, the fact that simple reaction-diffusion
mechanisms explain basic properties of developmental regulation is unlikely
to be incidental. Of course, there could be more than a few substances involved,
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and there may be surprises with respect to mechanisms; they could involve
the transduction as well as the transport of cell-to-cell signals across membranes,
directed transport of molecules along fibres and across junctions, pulsing instead
of stable patterns of morphogens, and many other features. In particular,
movement and signalling need not always be constrained to random redis-
tributions describable by diffusion terms. Independent of details and of the
complexity of mechanisms, we expect the general principle of short-range
autocatalysis and long-range inhibition to be a suitable framework for ex-
plaining a wide range of phenomena of spatial self-organization.

ParT 11

Short-Range Activation and Long-Range Inhibition as Conditions
for Pattern Formation: Analytical Derivation and Specification.

9. — Mathematical analysis of conditions for pattern formation.

After discussing features of biological pattern formation and their ex-
planation, on the basis of autocatalysis and lateral inhibition in semiformal
terms, we will now consider the generality and stringency of the principles
involved by analytical reasoning.

The capability of coupled reactions for the generation of spatial patterns
was first shown by TURING [3]. He mainly analysed linear kinetics, but he
already realized the importance of a nonlinear approach as well. Nonlinear
equations such as the « Brusselator » were proposed and investigated (4, 18].
In our studies on mathematical models for biological development we found
that pattern formation by coupled reactions, as a rule, requires a long-range
inhibiting effect, as antagonist of short-range autocatalysis; these effects, in
turn, explain rather directly the impressive «holistic » aspects of develop-
mental biology including regeneration, proportion regulation, induction, reg-
ularities of spacing and symmetry changes [5], exemplified by regeneration
of hydra and developmental regulation in other biological systems. We sct out
with an analysis of spatial destabilization for equations with power terms for
reaction orders of activation, inhibition and depletion; in this way, simple
relations between power terms can be derived as conditions for pattern for-
mation, as will be shown below. These relations were used for the generation
of a variety of models adapted to specific biological problems and exhibiting
specific physico-chemical properties. Any such model, however, is capable
of explaining the main features of developmental regulation mentioned above;
only biochemistry could prove a particular model. For one of our activator-
inhibitor models the mathematics of gradient formation was studied by

11 - Rendiconti S.I.F. - XCIX
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BABLOYANTZ and HIERNAUX [19]. A detailed analysis of the parameter range
leading to pattern formation was conducted by GRANERO, PORATI and ZaA-
NACCA [20], and the distribution resulting from the nonlinear interactions
wag derived in terms of analytical mathematics by MiMURA and NISHIURA [21].
The development of multipeak patterns was investigated by HAKEN and
OLBRICH [22].

10. — Requirements for pattern formation in terms of rates and orders of reac-
tions, and ranges of diffusion.

Beyond the analysis of particular models it is possible to demonstrate that
the conditions of autocatalysis and lateral inhibition are general mathematical
requirements for pattern formation by two coupled reactions, and this approach
has been further extended to systems with more than two reactions [6]. It
turned out that short-range activation and long-range inhibition or depletion
are conditions for pattern formation starting from spatially near-equal dis-
tributions as revealed by the mathematical theory of instabilities. In the
following we will briefly demonstrate this point.

Two coupled equations with production terms P and removal terms @
for the components of concentration a(x,?), b(x, ¢) and with redistribution
operators (e.g., diffusion terms) 2, and 9, read as follows:

(10 S = Py(a,5) — Qula, )+ Dula),
b
(1) D = Pyla, ) — Qula b) + 2u(h).

We assume that there is a spatially uniform solution ¢ = a4, b = b, for a stable
state characterized by

(]6) Pa(%, bo) = Qa(“(), bo) 9
(1d) Pyag, by) = Qu(toy by) .

For small space-dependent deviations a'= a — a,, b’= b— b, from the uniform
solution, the linear approximation of eq. (1) can be derived. For a domain
of length L with closed boundaries, Fourier components of the distribution
of a', b’ are of the form

TNRY

(2a) an(, 1) = a,'(t) cos I !

(20) bl (w, t) — BY (1) cos 7‘2”,
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In the simplest case redistribution terms of eq. (1) can be decscribed by dif-
fusion terms; for the w-th Fourier component, they read

%, n\? ,
3 a0 = 0.7 == () i,
0%b, LI
=) Zo8) = Do e = — s (7%) P

We now convert all kinetic terms of (1) into terms of the lateral-inhibition
theory: Rates u, v are reverso mean lifetimes 7,, 7, of molecules, ranges r,,
7, are defined as mean distances between production and decay as functions
of diffusion and decay rate, and ovders of reactions are given as pure numbers
which indicate, for instance, whether and to which extent reactions are self-
enhancing,

Rates in terms of the reciprocal mean lifetimes of molecules are given as

. Qa(aoa bo) . Pa(a’07 bD)
(1) p= RS =

(4b) p — Qb(afo, bo) — Pb(aoy bo) .
bo b,

Ranges are determined by the rules of physical chemistry (well known, for
instance, in the context of Brownian movement) as proportional to, and ap-
proximately equal to, the square root of diffusion constant times the time
allowed for diffusion (that is, in our case, the reverse decay rate). We thus
define ranges 7., r, as

D,
(5a) Fo= | —,

U
(5b) Py = Vlﬁ .
v

Reaction orders are defined as pure numbers:

" __8lnPa_§__an,,} . 0lnP, 0lnQ,|
] “ 9lna  Olna |, 77 9lnb  dlnb |’
) . _ 2P, 2ng, . _8InP, 2Ing,
" 9lna Olna |,,,’ T 0Inb 9lnb g,

For instance, if production P, of component a is proportional to a® (as in the
examples eq. (21)-(24) below), and removal @, proportional to a?, k,, is the dif-
ference of the powers of ¢ in P, and @,, 2—1 = 1.
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We begin by assessing the stability of the spatially uniform solution for
a and b; its stability is required because the formation of a reproducible pattern
will normally depend on a reproducible near-uniform initial situation. It
implies that the uniform distribution is protected against an overall explosion,
and has also implications for nonuniform distributions: in that case, the spatial
average of a and b is stable in the linear approximation even if local values
are not.

Formally, stability of the uniform solution is assessed by setting redistri-
bution terms Z,(a), 2,(b) in (1) to 0. By making use of (4)-(6), we may now
rewrite (1) in terms of deviations a', b’ from a,, b,.

The linear approximation reads

= P, ) — oy 1) = (=) (=) v =

2 ca ca
. @ 0P, @ 0Qa\ , | @ (b 0P, by 0Qa\ |
A‘“{(E da Q. aa)a+bo(Pa@7_(Z% by =

_ (0 Pe 0InQa 4 (9lnP.  OlnQd),,
“HN\oine  dina)® T \ombs  Oinbd ‘

Therefore, with definitions (6) of reaction orders,

oa’ by @,
(7“) a‘_:u(kaaa +b_ol"abb)-

The corresponding equation for 0b'/o¢ reads

ob' by, ,
(7b) a——v(a_okbaa +kbbb)'

Spatially uniform solutions a'(?), b'(f) are linear combinations of exp [4;¢] and
oxp [A,%], 4; and A, being eigenvalues given by the following equation:

,ukaa_ }- ,u ?_0 kab
bo
(8) =0.

by
—k —
Y a ba 'kab l

The two-factor system (1) leads to a stable uniform distribution a'= b= 0

(that is a = ao, b = b,) if both eigenvalues 4;, 4, (8) are negative (or have a
negative real part). This is the case if

(9a) M Ay = pkoa + vkyp<< 0
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and

(9b) Zl 12 == ,uv(kaa kbb'—" kab kba) > 0

We may now determine the conditions under which the system iz capable of
developing spatial patterns starting from near-uniform initial distributions,
that is from the uniform solution a,, b, with very slight superimposed variations.
Pattern formation occurs if, in case of a slight spatial variation, at least one of
the Fourier terms is self-enhancing. Because terms o2a/cx? and 02b/0x? are no
longer 0, the dynamics of pattern formation is governed by the redistribution
terms of eq. (1). The corresponding diffusion constants are expressed according
to (5}, in terms of ranges v2 = D ju, r} = D,[v, introduced into (3). Rewriting
eq. (1) in terms of ranges, rates and orders leads, in the linear approximation,
to eq. (7) extended by diffusion terms (3) expressed by ranges r,, r:

(10a) Ly (( 2 (71})) @+ ?kabb') ,
0
(100) %b? — (b" Fepatr’ + (7\,,,,— p2 (”L")z) b’) .

The corresponding determinant for the assessment of instabilities is

TNy ,
/j‘(kaa—(f) ra)—l H“ b_okab

b n o
i ’V(;Zkba (]lbb (L) ’/'%)—-2.
Spatial destabilization and thus pattern formation occurs if there is at least
one #» for which, because of the diffusion terms described by 7,, r,, one of the

eigenvalues A,, A, becomes positive. This is the case if the product 1, A, changes
sign as compared to the situation (9b) without redistribution:

(12) ;Ll 22 = M'V {(kaa 7',, (nLn) ) (l‘bb (TCT") ) - kab kba} < 0 .

If (12) holds, the n-th Fourier wave is self-enhancing. The condition of sign
change allows us to combine ineqgualities (95) and (12), leading us to a relatively
simple necessary condition for pattern formation

an an
(kua 7’a (L ) ) (kbb (L ) )< kab kba< kaa kbb
and thus

(13) Foaa?2 > — kyy 72 - 7292 (’Z") X

(11)
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11. — Correspondence of inequalities derived from the theory of dynamic in-
stabilities to autocatalysis and lateral inhibition as conditions for pattern
formation.

We may now restate the set of conditions for pattern formation by auto-
catalysis and lateral inhibition, and demonstrate point by point that they
are equivalent to the conditions for pattern formation as given by the theory
of dynamic instabilities in reaction-diffusion systems.

The lateral-inhibition theory of pattern formation is basea on the following
conditions A)-E):

A) One out of the two components a, b (say a) must be self-enhancing.

B) The other component (b) must be cross-inhibiting; inhibition can be
substituted by depletion of a substrate required for and consumed by activation.

C) The inhibitory effect must be relatively fast compared to the aec-
tivating effect.

D) Range of activation must be below a limit of the order of total field
size.

E) The range of inhibition must be sufficiently large in relation to the
range of activation.

The basis of the derivation are inequalities (9a), (98), (12) and (13), which
can be rewritten as

(9a) Ukea -+ Vhyp<< 0,
(gb) kab kba< kaa k’bb ’
. : (TnY? 5 [T\?
(12) (kaa— rs (f) ) (k,,b— re (f) )< kavkoa s
2
(13) k’uaT%> _ kbb‘;ﬂ: + 7'3 7'% (7_%1/) .

The combined inequalities (9a), (9b), (12) are sufficient for pattern formation.
Equation (13) derived from (95) and (12) is necessary but not sufficient. Ac-
cording to (9a) at least one of the k.., k,,—say k,—must be negative:

(14a) kpp<< 0.
Then both terms on the right-hand side of eq. (13) are positive. Therefore,

(14b) Faa> 0
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must be positive—implying that one of the reactions has to be autocalatytic.
This corresponds to condition A).

It follows from (14) that k.. k%, is negative and, therefore, according to
©q. (9b),

(15) Fashpa<< 0

must also be negative; either k., is negative and k,, positive—this means that
activation leads to the produetion of an inhibitor which inhibits activation;
or k, is positive and k,, negative in which case substance b is required but
also depleted by activation. There is no third possibility in the two-factor
case. This corresponds to condition B).

From (9a) and (14a), it follows that

v Kaa
16 — .
(16) rE

Sinece k., is positive and k,, negative, and reaction rates u and » are always
positive, the ratio »/u must be above a positive threshold (which will be of the
order of 1 if the parameters describing orders of reaction k, and — k,, are of
the order of 1). This corresponds to condition C).

Inequality (12) implies that it is not sufficient for pattern formation that
k.. is positive. The entire bracket

n\?
kaa_ = ':

must be positive for at least one choice of n, that is » = 1, and thus

7 Vi
1 Ta ea
a7 L< 7

It follows that there is an upper limit for the range of activation, in relation
to tofal field size L, corresponding to condition D).

The condition of lateral inhibition follows from eq. (12): Pattern formation
oceurs if the range of inhibifion exceeds a threshold. Taking into consideration
the signs of the terms in (12) (first bracket positive, k,, negative, the product
ko kyo also negative), inequality (12) is assured if r, is sufficiently large, cor-
responding to condition E). .

A necessary, but not sufficient requirement is eq. (13) which says that

—Fk rir} (an\2 —k
(18@) 7'12,> 7'2 ?a;bﬁ —|— ’]:a;q (T) > 7"2, ka:b .
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It follows that, in any case, the ratio r,/r, has to exceed the threshold

(18b) ;- V_ ko

More detailed assessments of these conditions have been described else-
where [6]. It can be shown that, for field sizes which are large compared to
the ranges of activation and inhibition, pattern formation depends on the
ratio of the ranges of inhibition and activation 7,/r,, and occurs if this ratio
exceeds a threshold.

Except for rather special parameter ranges, range of inhibition must ex-
ceed range of activation in absolute terms if patterns are to be generated.
However, strictly speaking, a smaller range of inhibition would also lead to
patterns in cases with strong activation and weak inhibition, cases in which
the uniform state is close to instability with respect to an overall explosion
of the system. Such parameter ranges are probably more of a mathematical
than of a biological interest, but even then the general conditions (17), (18)
hold that there is & lower limit for the range of inhibition and an upper limit
for the range of activation. In intuitive terms, this can be explicated by the
fact that the range of inhibition adds to the spatial extension of the activator
distribution; the inhibitor covers an area approximately given by the sum
of the ranges of activation and inhibition.

We conelude that conditions A)-F) are necessary for the «self-generation »
of a spatial pattern by a two-component reaction-diffusion system. The list
of conditions for pattern formation as given by the lateral-inhibition theory
is thus equivalent to conditions of destabilization derived by analysis of in-
stabilities in terms of linear approximations for two coupled reactions. This
correspondence, however, is neither trivial nor obvious because it depends on
the systematic analysis of signs within a set of inequalities.

12. — Pattern formation by more than twe components: generalization of auto-
catalysis and lateral inhibition as system properties.

Is it possible to generalize the conditions derived for the two-factor case
to systems with more than two coupled reactions? One might think of clas-
sifying the reactions into those with and without autocatalytic terms. This
direct method, however, has proven to be inadequate. For instance, activation
can be produced by inhibition of inhibition; therefore, a pattern-forming system
can be constructed with three components, two of which aectivating indirectly,
in combination, by inhibition of inhibition, while the third gives rise to an
inhibitory effect proper; no reaction with direct positive feedback need be
involved. On the other hand, an analysis of multicomponent systems is pos-
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sible if we resort to the main feature of the lateral-inhibition theory, the ranges
of molecules (as given by their diffusion and decay rates), from the outset:
By first classifying the components into short-range and long-range molecules
and then determining whether the short-range subset would be unstable if left
to itself. This analysis can be carried out by assessing the eigenvalues of the
corresponding matrix of the short-range subget. The subsystem is unstable
and thus self-activating, if and only if at least one of the eigenvalues is positive.
This is one requirement for pattern formation. Further the system as a whole
has to be stable in the absence of redistribntion just as in the two-factor case
(eq. (9)). All cigenvalues have to be negative. This implies that the long-
range components exert a stabilizing inhibitory effect on the activating subset
of reactions which would explode, if left to itself. If these conditions are met,
then redistribution by diffusion leads to destabilization and generation of the
spatial patterns, if and only if the ranges of molecules of the activating subset
are sufficiently small and if the ranges of molecules of the inhibiting subset
are sufficiently large. This consideration, demonstrated in detail elsewhere [6],
shows that the concepts of autocatalysis and lateral inhibition are widely
applicable; on the other hand, we are warned that activation and inhibition
need not be features of individual types of molecules. They can be system
properties of several reactions; pattern formation may occur even in systems
in which no single reaction has a directly self-enhancing preperty.

13. — A simple «recipe» for the generation of models of pattern formation:
power laws.

For the purpose of constructing and assessing models for pattern formation
it has proved very uscful to employ power laws in the kinetic cquations [5];
as further simplifications, we may introduce the assumption, reasonably
sustained by enzymology, that removal reactions @,, @, (eq. (1)) are linear
relations with respect to a, b, and that the powers are integers specifying orders
of reaction. This leads to equations of the type

oa aF O%q
(194) 3= Mt Dags
ch am ozh
9 kA A
(19b) Y c I vb—l—D,,a -

We may now state the conditions for relations between the powers k, I, m, n
which lead to patterns for suitably chosen parameter ranges of the other
constants involved, such as D,, D,, and ¢, ¢'. The condition for autocatalysis
(14) is simply

(Z0a) koa=k—1>0, and thus k>2.
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In the simplest case, &k = 2, condition (9b) reads
{20b) ml>n-+1.

A few particularly simple models will now be listed.

i) Activator (a)—inhibitor (k) model; no self-inhibition of inhibitor
production (n = 0):

o da  at o%a
oh ozh

(21b) = ¢'ar—vh + Dy .

ot
This is one of the simplest models conceivable; it is the one on which many
of our biological simulations were based and which has been analysed and
applied to a considerable extent in the literature.

ii) Model with inhibitor production in proportion to activation (m =1,

Ja  cal oz
G 7 Mt Degn

oh , o0%h
(_);2b) azca*vh+phm.
iii) Model with similar production terms for activator and inhibitor
(k = m, 1 = n); this could be interpreted, for instance, as kinetics of release
of both activators and inhibitors from the same type of vesicles:

da a\? o
(21301) a_t:(}(ﬁ) —,ua—l—Daa(—xz,
oh (o} ozh
(250) Fri ¢ (h) —vh 4 Dy A

Depletion models (&, >0, %k, < 0) implying that inhibition is brought
about indirectly by depletion of a substance (concentration s(z,?)) which is
required for and consumed by activation can be analysed along similar lines.
An example is given by

oa o%a
(240/) gt—:cazs—-‘ua,—i—Daa—xz,

Os 0%s
(24b) —a—t =c¢'—9'azs + -Ds a—zzé .
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Further, one may inquire whether the two-factor system can be concep-
tually simplified by assuming that the inhibitor is a product of activator deg-
radation, or that the depleted substrate is a precursor of the activator. The
answer is positive. For instance, in the model equation (22) we may set ¢'= u
in eq. (22b) and then interpret the model as describing a system in which the
product of activator degradation is the inhibitor. Pattern formation requires
that activator degradation strongly increases the diffusion range of the molecule,
for instance by reducing its size or by the removal of charges such that it is
able to pass easily through junections from cell to cell.

The basic models that we have listed meet the conditions for pattern for-
mation easily and not just by a narrow margin. This is because we assumed
integer values k¥ = 2 for the autocatalytic effect, leading to k., (eq. (20a)) =1
and not, say, 0.05, just above the critical threshold 0. This makes sense in
biological terms because mechanisms should be robust against minor flue-
tuations and distortions. It is also useful for the construction of more involved
models, because, then, the equations can be used as asymptotic criteria for
complex systems which incorporate detailed and realistic features. For instance,
mathematicians will be quick in pointing out that they do not like models
of the type (21)-(23) because terms 1/& go to infinity at low concentrations of h,
and physical chemists will insist that enzyme kinetics leads to inhibition terms
of the Michaelis-Menten type 1/(1 + const-h), and not 1/h. However, sub-
stitution of terms 1/# by const-1/(1 -+ K, h) does not affect the pattern-forming
capacity of the system if K, is sufficiently large. Another feature that can
easily be introduced is a constitutive production of activator, or inhibitor, or
both. Adding such terms is again consistent with pattern formation if the
terms are sufficiently small. Therefore, the simple equations with power terms
are very useful in assessing even complex reaction systems, incorporating many
features, as to the capacity for pattern formation.

14. - Biological pattern formation, synergetics and the theory of dynamic
instabilities.

Since this lecture is part of a course on synergetics and dynamic instabilities
it appears appropriate to ask for the relevance of these concepts for under-
standing biological development. The answer is that biological pattern for-
mation is closely related to gynergetics in that self-generating mechanisms
with autocatalytic characteristics are involved, whereas the relation to dynamic
instabilities is less direct: true random symmetry breaking is not a dominating
feature in the development of an animal. The most conspicuous spatial strue-
tures, say of a rhino, arise reproducibly at defined stages in defined places
with defined orientation, being generated under the control of the genes. Never-
theless, the theory of dynamic instabilities is of interest for modelling develop-
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ment, because spatial order often depends on the amplification of slight pre-
existing cues causing induction or orientation of the structure. For instance,
the reproducible orientation of a substructure may be directed by a very shallow
initial gradient; in logical terms, this is in contrast to symmetry breaking
beeause the orientation is strictly included in the initial conditions; mathemati-
cally, however, the process is very closely related to true symmetry breaking
because in the latter case a random fluctuation produces a very slight asym-
metry in the first place, which in turn leads to a polar pattern of unpredictable
orientation. For this reason, the mathematics of dynamic instabilities is useful
for models of primary biological pattern formation.

Generally speaking, the explanation of properties of biological systems
including development of spatial organization of an organism eventually re-
quires the combination of molecular biology and mathematics in order to reveal
how systems of interacting and moving molecules generate a given spatial
order. Up to now the relation between mathematicians and theoreticians,
on the one hand, and experimentalists, on the other, has not been as fruitful
in developmental biology as it was in physics and physical chemistry. This
has, in part, psychological reasons: many biologists still believe that every
issue will eventually be settled by molecular biology alone, whereas actually
even the complete list of all molecules involved in pattern formation would
not elucidate the actual pattern produced by them unless we analyse the cor-
responding system in mathematical terms. On the other hand, theoreticians
often refrain from adapting theoretical concepts to biological facts. The main
issue nowadays is not how structures can be formed altogether but how the
specific and impressive features of biological regulation are to be accounted
for. This requires stating main biological features at the outset and then
proceeding to the specific search for adequate mathematieal theories and models.
Further, it is necessary to avoid distortions of biological facts for the sake
of analytical mathematies, and to refrain from raising artificial problems
which are irrelevant for biology. Two examples of the latter type will be
mentioned: Primary patterns such as morphogenetic gradients have fo be
relatively stable to exert their organizing effect in the course of biological
development. However, life is finife, and, therefore, absolute stability of so-
lutions of equations for pattern formation is not a biologically acceptable
criterion for the quality of mathematical models. Another example is sensitivity
of patterns to boundary conditions. Pattern formation by reaction-diffusion
mechanisms strongly depends on boundary conditions in cases in which the
ranges of activation and inhibition are small compared to the size of the field
at the stage of pattern initiation. In such cases, multiple-peak patterns are
formed; small distances between peaks are avoided, but otherwise the dis-
tribution of peaks is highly sensitive in detail to initial and boundary con-
ditions including slight random fluctuations. However, this feature of reac-
tion-diffusion systems should not be taken as a challenge to its applicability
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in biology by questioning whether the reproducible structure of organisms
can be determined in this way: There is no biological evidence that reproduc-
ibility, multiple-peak pattern and random initiation occur together.

The complexity of biological structures appears to result from the com-
plexity of cell responses to simple fields such as gradients, and from the com-
bination of patterns and subpatterns. Gradients themselves, as primary spec-
ifiers of «positional information », are rather robust with respect to minor
variations in initial and boundary conditions which may affect polarity, but
generally they do not change the form of the gradient; polarity reversal is
indeed observed in some biological systems, such as regeneration of coelenter-
ates under cerfain artificial conditions. In exceptional cases, symmetric dis-
tributions are formed instead of polar structures, for instance a hydra with
feet at both ends and a head in the middle; this feature can also be explained
on the basis of pattern formation by autocatalysis and lateral inhibition: if
total field size is sufficiently large compared with the range of activation,
symmetric instead of polar fields can be produced. In cases in which periodic
patterns are reproducibly formed, as, for instance, in the formation of leaf
rudiments in plants, peaks of activation are mof randomly initiated but pro-
duced sequentially in a recursive manner in the course of growth, the position
of the youngest rudiment being defined by the range of inhibition extending
from the preceding one. Certain multipeak patterns such as that of stomata
in plant leaves appear to be randomly initiated; but in this case the pattern
is not reproducible: whereas the density of stomata and their tendency to
avoid small distances (¢« second-order distribution ») is determined, each leaf
on a tree is different in detail with respect to the distribution of the stomata.
In other words, the theory of pattern formation by autocatalysis and lateral
inhibition is in remarkable agreement with the biological results on robust as
well as sensitive features of patterns formed in actual morphogenesis.

Generally, one expects that the understanding of spatial organization in
biological development is to be based on a combination of embryological,
biochemical, physical and mathematical studies. As far as the contribution
of mathematical physics is concerned, synergetics may contribute in an im-
portant way, and the theory of dynamic instabilities in 2 helpful manner towards
a better understanding of biological development.
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