Zukunftsorientierte Nutzung ländlicher Räume
- LandInnovation -

Konversions-, Speicher- und Versorgungstechnologien für die energetische Biomassenutzung

Dietrich Hebecker
Ingo Purr
Katja Purr

Februar 2006
Berlin-Brandenburgische Akademie der Wissenschaften
Interdisziplinäre Arbeitsgruppe „Zukunftsoorientierte Nutzung ländlicher Räume“
Jägerstr. 22/23
10117 Berlin
Tel. (030) 20370-538
Fax (030) 20370-214
http://www.bbaw.de/bbaw/Forschung/Forschungsprojekte/Land/de/Startseite

Materialien
Nr. 8

Dietrich Hebecker, Ingo Purr, Katja Purr
Konversions-, Speicher- und Versorgungstechnologien für die energetische Biomassenutzung
© 2006 Berlin-Brandenburgische Akademie der Wissenschaften, Berlin

Alle Rechte, insbesondere die der Übersetzung in fremde Sprachen, sind vorbehalten.

Lektorat: Tobias Plieninger
Satzvorlage und Umschlaggestaltung: work:at:BOOK / Martin Eberhardt, Berlin
Printed in Germany
Inhalt

Zusammenfassung ... 9

1 Einleitung .. 11

2 Stand der Konversions- und Nutzungstechnologien ... 13
 2.1 Wege der energetischen Biomassenutzung ... 13
 2.1.1 Biochemische Umwandlungsprozesse ... 14
 2.1.2 Physikalisch – chemische Umwandlungsprozesse ... 18
 2.1.3 Thermochemische Umwandlungsprozesse .. 20
 2.2 Umwandlungsprozesse zur Bereitstellung von Endenergie ... 24
 2.2.1 Bereitstellung von mechanischer Energie bzw. Elektroenergie 24
 2.2.2 Wärmebereitstellung .. 27
 2.2.3 Kältebereitstellung ... 28
 2.3 Entwicklungsvocharben und Tendenzen für eine effiziente Bioenergienutzung 29

3 Bewertung und Vergleich verschiedenen Nutzungswege ... 33
 3.1 Konversionsverfahren ... 33
 3.1.1 Bereitstellung flüssiger Gebrauchsenergieträger .. 33
 3.1.2 Bereitstellung gasförmiger Gebrauchsenergieträger ... 36
 3.1.3 Bereitstellung fester Gebrauchsenergieträger .. 38
 3.2 Verfahren zur Bereitstellung von Endenergien .. 39
 3.3 Darstellung gesamtheitlicher Nutzungswege ... 42

4 Spezifikation der Gebrauchs- und Nutzenergienträger .. 47
 4.1 Verfügbarkeit und Versorgungsfähigkeit von Bioenergieträgern in Deutschland 47
 4.2 Verfügbarkeit und Versorgungsfähigkeit von Bioenergieträgern in Brandenburg 48
 4.3 Speicherfähigkeit der Bioenergieträger ... 50
 4.4 Transport- und Speicherfähigkeit der Gebrauchsenergien .. 51
 4.4.1 Flüssige Gebrauchsenergieträger .. 51
 4.4.2 Feste Gebrauchsenergieträger ... 52
 4.4.3 Gasförmige Gebrauchsenergieträger ... 52
 4.5 Speicherfähigkeit und Einspeisemöglichkeiten von Endenergien 53
 4.6 Charakterisierung des ländlichen Nutzenergiebedarfes ... 54

Literaturverzeichnis ... 59
Tabellenverzeichnis

Tabelle 1: Biogaserträge verschiedener landwirtschaftlicher Stoffe .. 15
Tabelle 2: Darstellung der Vergasungstechniken und der zu gewinnenden Produkte 23
Tabelle 3: Vor- und Nachteile der Trockenfermentation ... 31
Tabelle 4: Eigenschaften biogener und fossiler Kraftstoffe ... 34
Tabelle 5: Eigenschaften gasförmiger Gebrauchsenergieträger .. 38
Tabelle 6: Übersicht exergetische Wirkungsgrade der Konversionsverfahren 42
Tabelle 7: Übersicht exergetische Wirkungsgrade der Nutzungstechnologien 43
Tabelle 8: Anbau nachwachsender Rohstoffe im Land Brandenburg .. 49
Tabelle 9: Lagereigenschaften von Energiepflanzen ... 50
Tabelle 10: Vergütung für Stromgewinnung aus Biomasse in Cent/kWh ... 53
Tabelle 11: Einsatzstoffe und deren Berechtigung zum Bezug des NawaRo-Bonus 54
Abbildungsverzeichnis

Abbildung 1: Darstellung der Konversionstechnologien ... 14
Abbildung 2: Schematische Darstellung der Biogaserzeugung .. 15
Abbildung 3: Biogasanlagen in Deutschland ... 16
Abbildung 4: Schematische Darstellung der Ethanolgewinnung ... 17
Abbildung 5: Bioethanolanlage in Deutschland .. 17
Abbildung 6: Verfahrensschritte bei der Pflanzenölgewinnung ... 19
Abbildung 7: Biodieselanlagen Deutschland ... 19
Abbildung 8: Verfahrensschritte der thermischen Konversionswege ... 20
Abbildung 9: Durchschnittliche Gaszusammensetzungen und Vergasungstechniken 21
Abbildung 10: Schematischer Verfahrensablauf zur Gewinnung synthetischer Kraftstoffe 22
Abbildung 11: Schematische Darstellung der Flash-Pyrolyse im Wirbelbettreaktor 24
Abbildung 12: Nutzungswege zur Bereitstellung von mechanischer Energie bzw. Elektroenergie _______________________________ 24
Abbildung 13: Schematische Darstellung des Dampf – Kraft – Prozesses .. 25
Abbildung 14: Überblick Brennstoffzellen ... 26
Abbildung 15: Feuerungsmuster in Abhängigkeit der Biomasse und Anlagenleistung 27
Abbildung 16: Feuerungsmuster .. 28
Abbildung 17: Schematische Darstellung einer Absorptionskälteanlage ... 29
Abbildung 18: Verfahren der Firma CHOREN .. 30
Abbildung 19: Anwendung des FZK-Konzeptes am Beispiel von Baden-Württemberg 31
Abbildung 20: Exergieflussbild zum kleintechnischen Fertigpressen ... 34
Abbildung 21: Exergieflussbild zur alkoholischen Vergärung von Zuckerrüben 35
Abbildung 22: Exergieflussbild eines BTL-Verfahren ... 35
Abbildung 23: Exergieflussbild zur Pyrolyse ... 36
Abbildung 24: Exergieflussbild Methanvergärung ... 37
Abbildung 25: Exergieflussbild zur thermochemischen Vergasung ... 37
Abbildung 26: Exergieflussbild zur Bereitstellung des Pyrolyseprozesses 38
Abbildung 27: Einsatz von biogenen Kraftstoffen in BHKW .. 39
Abbildung 28: Exergieflussbild Stirlingmotor .. 40
Abbildung 29: Exergieflussbild Brennstoffzelle .. 41
Abbildung 30: Exergieflussbild DKP und Gasturbine ... 41
Abbildung 31: Exergetische Analyse eines Heizkessels ... 42
Abbildung 32: Exergetischer Wirkungsgrad bei der Bereitstellung flüssiger Gerbachtenergieträger ... 43
Abbildung 33: Wirkungsgrade für die Bereitstellung von Endenergie aus gasförmigen und flüssigen Gerbachtenergieträgern am Beispiel von Biogas und Bioethanol ... 45
Abbildung 34: Wirkungsgrade der Konversionsverfahren unter Berücksichtigung der Reststoffverwertung ... 46
Abbildung 35: Energiebereitstellung und Potential der erneuerbaren Energien 47
Abbildung 36: Einflussparameter auf das lokale Biomassepotential ... 48
Abbildung 37: Durchschnittliche Erträge in Brandenburg und Deutschland 49
Abbildung 38: Biomassepotential für die Landkreise Barnim und Uckermark 50
Abbildung 39: Kraftstoffverbrauch (Anbauverfahren: Pflug, Saatbettkombination) 55
Abbildung 40: Jährlicher Energiebedarf eines landwirtschaftlichen Betriebes mit 1000 ha und Tierbesatz ... 56
Abbildung 41: Energieertrag bzw. Bedarf zur Bereitstellung flüssiger Kraftstoffe 57
Zusammenfassung

Die erzeugten gasförmigen Gebrauchsenergieträger werden auf Grund ihrer Transport- und Speichereigenschaften zumeist in stationären Anlagen am Entstehungsort in Nutzenergien überführt. Die dafür zur Verfügung stehenden Konversionsverfahren wie Methangärung und Vergasung weisen einen annähernd gleichen und im Vergleich zur Bereitstellung synthetischer flüssiger Energieträger hohen Wirkungsgrad auf.

Um das vorhandene Biomassepotential optimal zu nutzen sollten bei Konversionsprozessen anfallende biogene Reststoffe wie Presskuchen aus Ölmühlen oder Zuckerrübenschnitzel aus der Ethanolgewinnung, einer weiteren Nutzung zu geführt werden.

Im Land Brandenburg ist auf Grund der geringen Bevölkerungsdichte und des hohen Anteils an Acker- und Waldfläche die komplexe energetische Versorgung mit biogenen Kraftstoff, Heizwärme und Elektroenergie der Bevölkerung im ländlichen Raum möglich.
1 Einleitung

2 Stand der Konversions- und Nutzungstechnologien

2.1 Wege der energetischen Biomassenutzung

Unter dem Begriff Biomasse wird ein sehr breites Spektrum an Energieträgern zusammengefasst. Prinzipiell werden darunter sämtliche Stoffe organischer Herkunft verstanden, also die gesamte in der Natur lebende und wachsende Materie und die Abfallstoffe aller lebenden und toten Lebewesen. Die Abgrenzung zu fossilen Energieträgern beginnt bei den Sekundärprodukten der Verrottung also Torf.

Die Heizwerte der verschiedenen Biomassen werden stärker durch den produktspezifischen Feuchtegehalt beeinflusst als durch die Art der Biomasse. Für trockene Biomasse kann von einem Heizwert von 19 MJ/kgTS ausgegangen werden.

Weiterhin kann über die physikalisch – chemischen Prozesse vor allem ölhaltiger Pflanzen ein flüssiger Kraftstoff gewonnen werden.

Diese drei Wege sind durch unterschiedliche Anforderungen an die eingesetzte Biomasse gekennzeichnet. Dementsprechend eignen sich Biomassen mit hohem Feuchtegehalt besonders für den ersten Weg, mit hohem Ölgehalt für den zweiten und mit hohem Trockensubstanzgehalten für den dritten Konversionsweg.
2.1.1 Biochemische Umwandlungsprozesse

Methangärung

Tabelle 1: Biogaserträge verschiedener landwirtschaftlicher Stoffe

<table>
<thead>
<tr>
<th>Stoff</th>
<th>Gasertrag in m³/t Substrat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rindergüle</td>
<td>25</td>
</tr>
<tr>
<td>Schweinegülle</td>
<td>36</td>
</tr>
<tr>
<td>Futterrüben</td>
<td>135</td>
</tr>
<tr>
<td>Silomais</td>
<td>190</td>
</tr>
<tr>
<td>Weidegras</td>
<td>110</td>
</tr>
</tbody>
</table>

Quelle: [22]

Dieser Prozess läuft bei Umgebungstemperatur nur sehr langsam ab, so dass bei den technischen Anwendungen der Reaktor beheizt wird, um somit einen effektiven Substratumsatz zu erzielen. Weiterhin ist auch eine gleichmäßige Durchmischung des Materials im Fermenter einzuhalten, damit wird gewährleistet, dass die Umsetzung zu Methan gleichmäßig und vollständig erfolgt.

Abbildung 2: Schematische Darstellung der Biogaserzeugung

Abbildung 3: Biogasanlagen in Deutschland
Quelle: [1]

Alkoholische Gärung

Diese zusätzlichen technischen Prozesse sind mit weiteren Aufwendungen verbunden, wobei insbesondere der Celluloseaufschluss aufwendig ist, so dass die Vorteile für die biochemische Ethanolgewinnung grundsätzlich bei den zuckerhaltigen Biomassen liegen.

Aus der eingesetzten Biomasse wird nach der Reinigung und Zerkleinerung sowie notwendigen Vorbehandlungen entsprechend Abb.4 Ethanol gewonnen. Das eingemaischte Material wird in diskontinuierlichen aber auch in kontinuierlichen Prozessen mit Hefe fermentiert, wobei die vergärbaren Bestandteile unter Freigabe von Kohlendioxid zu Ethanol umgesetzt werden. Dieses wird aus dem Gärsubstrat in einer Destillation gewonnen. Der dabei erzeugte Rohalkohol mit Alkoholgehalten von 82 bis 87 Vol.% kann auch ohne die Weiteraufkonzentrierung als alleiniger Treibstoff eingesetzt werden, wie es zum Beispiel in Brasilien angewendet wird. Der Rohalkohol kann in mehreren Destillationssstufen und einer Absolutierung weiter aufkonzentriert werden, um den Wassergehalt im Ethanol auf unter 0,3 Vol.% abzusenken und damit die Mischbarkeit mit

Abbildung 4: Schematische Darstellung der Ethanolgewinnung

Großtechnische Anlage zur Gewinnung von Bioethanol sind bisher nur in geringem Maße realisiert, wie in Abb.5 deutlich wird steigt jedoch die Umsetzung dieser Technologie verstärkt. Wobei vor allem in Nord- und Ostdeutschland Anlagen mit Produktionskapazitäten über 100,000 t/a errichtet werden.

Abbildung 5: Bioethanolanlage in Deutschland
Quelle: [27]
Kompostierung

2.1.2 Physikalisch – chemische Umwandlungsprozesse

Für die Produktion von flüssigen Gebrauchsentragern durch physikalische – chemische Umwandlung kommen im Mitteleuropa vor allem Raps und Sonnenblumen als Ölsaaten auf Grund ihres hohen Ölertragspotentials in Frage.

Diese Produktionsvorgänge können sowohl in großtechnischen Anlagen aber auch in dezentralen Kleinanlagen erfolgen. In der Regel erfolgt immer eine Vorreinigung des Erntegutes, um Verunreinigungen zu entfernen und eventuelle Abbauprozesse durch die Feuchte der Saat und Pilze zu verhindern und damit die Saat lagerfähig zu konditionieren.

Auch dieser Konversionsweg ist mit einer unvollständigen Nutzung der Biomasse verbunden und kann eine mehrstufige Prozesskette bedingen.

Abbildung 6: Verfahrensschritte bei der Pflanzenölgewinnung

Abbildung 7: Biodieselanlagen Deutschland
Quelle: [27]
2.1.3 Thermochemische Umwandlungsprozesse

Unter thermochemischen Verfahren versteht man chemische Umwandlungsprozesse der Biomasse bei hohen Temperaturen. Dabei unterscheidet man die Prozesse an Hand des stöchiometrischen Sauerstoffverhältnisses in Pyrolyse, Vergasung und Verbrennung. Die Verbrennung ist dabei das älteste angewendete Konversionsverfahren und hat bis heute die größte Bedeutung.

<table>
<thead>
<tr>
<th>Prozess</th>
<th>Temperatur</th>
<th>Produkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trocknung</td>
<td>100 bis 150 °C</td>
<td>Asche, Pyrolysegas (CO, CO₂, CH₄, H₂, CH₃CO₂H)</td>
</tr>
<tr>
<td>Pyrolyse</td>
<td>bis 500 °C</td>
<td>Holzkohle, Pyrolysegas (CO, CO₂, CH₄, H₂O, H₂, CₓHᵧ)</td>
</tr>
<tr>
<td>Vergasung</td>
<td>bis 2000 °C</td>
<td>Teer & wässrige Phase, Kondensierbare Bestandteile (Teer, Essigsäure...)</td>
</tr>
</tbody>
</table>

Abbildung 8: Verfahrensschritte der thermischen Konversionswege

Vergasung

Neben den herkömmlichen Festbettvergaser, die nur eine geringe Effizienz um 50% aufweisen und den Wirbelschichtverfahren, die vor allem für Großanlagen und für Anlagen im Leistungsbereich über 1 MW geeignet sind, werden immer neue Techniken entwickelt, die nicht dieser klassischen Einordnung gerecht werden. Ursache dieser ständigen Weiterentwicklung ist die Verbesserung der

Abbildung 9: Durchschnittliche Gaszusammensetzungen und Vergasungstechniken
Quelle: [15]

Synthetische Kraftstoffe

\[
S = \frac{p_{H_2} - p_{CO_2}}{p_{CO} - p_{CO_2}} \quad (\text{GL.} 1)
\]

Die über diese Verfahren bereitgestellten Stoffe können als reine Kraftstoffe oder durch Beimischung zu konventionellen Kraftstoffen verwendet werden.

![Abbildung 10: Schematischer Verfahrensablauf zur Gewinnung synthetischer Kraftstoffe](image-url)
Pyrolyse

Tabelle 2: Darstellung der Vergasungstechniken und der zu gewinnenden Produkte

<table>
<thead>
<tr>
<th>Pyrolyseverfahren</th>
<th>Einflussparameter</th>
<th>Produkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verkohlung</td>
<td>lange Verweilzeit, geringe Aufheizrate</td>
<td>Koks</td>
</tr>
<tr>
<td>Flashpyrolyse</td>
<td>Schnelle Aufheizraten</td>
<td>Pyrolyseöle</td>
</tr>
<tr>
<td>Druckverflüssigung</td>
<td>hoher Wasserstoffpartialdruck</td>
<td>Pyrolyseöle</td>
</tr>
</tbody>
</table>

Ein weiteres Verfahren zur Bereitstellung von Pyrolyseölen stellt die Druckverflüssigung dar, bei der unter hohem Wasserstoffdruck die Biomasse unter Wirken eines Katalysators zersetzt wird. Dabei können aus 100 kg Holz etwa 36 kg Pyrolyseöl bereitgestellt werden [4]. Die Technologie ist dabei an die Kohleverflüssigung angelehnt. Das so gewonnene Bioöl bedarf vor dem Einsatz zur energetischen Nutzung in Form von Kraftstoff jedoch noch weiteren Aufbereitungsprozessen, deshalb scheint eine solche Technologie nur in zentralen Großanlagen mit entsprechenden Logistikproblemen realisierbar zu sein.
2.2 Umwandlungsprozesse zur Bereitstellung von Endenergie

2.2.1 Bereitstellung von mechanischer Energie bzw. Elektroenergie

Für die unterschiedlichen Gebrauchsenergieträger stehen verschiedene Verfahren zur Bereitstellung mechanischer Energie zur Verfügung. Ein Überblick der möglichen Nutzungswege ist in Abb. 12 gegeben.
Großtechnisch erfolgt die reine Verbrennung oder Mitverbrennung in konventionellen Kraftwerken der biogenen Gebrauchsentgräger mit anschließendem Dampf-Kraft-Prozess zur Stromgewinnung. Dabei wird im Dampferzeuger durch die Verbrennungswärme Dampf bereitgestellt, welcher in einer nachgeschalteten Turbine entspannt und durch diese Druckabsenkung elektrische Energie erzeugt wird. Der Entspannungsdruck und die dazu gehörige Kondensationstemperatur richten sich dabei in der Regel nach der gewünschten Temperatur der Wärmeauskopplung. Die angewendeten Frischdampfparameter sind deutlich niedriger als in konventionellen Heizkraftwerken, so dass auch die Effizienz der Stromerzeugung relativ gering ist.

Abbildung 13: Schematische Darstellung des Dampf – Kraft – Prozesses

In so genannten Kombikraftwerken werden Gas- und Dampfturbinen (GuD) eingesetzt und damit höhere Wirkungsgrade realisiert. Bei Dampfkraftwerken liegt das obere Temperaturniveau niedriger als bei Gasturbinenanlagen. So wird in Kombikraftwerken nach der Gasturbine mit dem Abgasstrom und einem Abhitzekessel ein Dampfkraftprozess realisiert. Damit werden die thermodynamischen Vorteile der Gasturbine, also Wärmezufuhr bei hoher Temperatur, mit dem des Dampfkraftprozesses, der Wärmeabfuhr auf niedrigem Temperaturniveau, vereinigt.

<table>
<thead>
<tr>
<th>Brennstoffzelle</th>
<th>Brenngas</th>
<th>Temp.</th>
<th>Elektrolyt</th>
</tr>
</thead>
<tbody>
<tr>
<td>alkalische BZ</td>
<td>H₂</td>
<td>60–100°C</td>
<td>KOH</td>
</tr>
<tr>
<td>(AFC,ABZ)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Membran BZ</td>
<td>H₂, Methanol</td>
<td>60–80°C</td>
<td>Protonen-leitende Membran</td>
</tr>
<tr>
<td>(PEFC,PMBZ)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphosaure BZ</td>
<td>H₂, Erdgas</td>
<td>160–220°C</td>
<td>H₃PO₄</td>
</tr>
<tr>
<td>(PAFC,PSBZ)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karbonatschmelzen BZ</td>
<td>H₂, CO, Erdgas, Kohlegas</td>
<td>600–660°C</td>
<td>Li₂CO₃</td>
</tr>
<tr>
<td>(KSBZ,MCFC)</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Oxidkeramische BZ</td>
<td>H₂, Erdgas, Kohlegas</td>
<td>800–1000°C</td>
<td>ZrO₂</td>
</tr>
<tr>
<td>(OKBZ,SOFC)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 14: Überblick Brennstoffzellen
Quelle: [16]
2.2.2 Wärmebereitstellung

Abbildung 15: Feuerungsarten in Abhängigkeit der Biomasse und Anlagenleistung
Quelle: [9]

2.2.3 Kältebereitstellung

In landwirtschaftlichen Betrieben ist meist eine komplexe Energieversorgung notwendig. So kann neben der Stromversorgung und Wärmebereitstellung auch die Bereitstellung von Kälte für Lager- und Kühlzwecke notwendig sein.

Abbildung 16: Feuerungsarten
Quelle: [9]
Der Aufbau einer Kälteanlage ist in Abb. 17 schematisch dargestellt. In einer Absorptionskälteanlage durchläuft das Arbeitsmedium, in der Regel Wasser, unterschiedliche Apparate auf verschiedenen Temperatur- und Druckniveaus.

Abbildung 17: Schematische Darstellung einer Absorptionskälteanlage

2.3 Entwicklungsvorhaben und Tendenzen für eine effiziente Bioenergienutzung

Abbildung 18: Verfahren der Firma CHOREN
Quelle: [18],[26]

Tabelle 3: Vor- und Nachteile der Trockenfermentation

<table>
<thead>
<tr>
<th>Vorteile</th>
<th>Nachteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>kleinere Anlagen auf Grund höherer Energiedichte des Substrates</td>
<td>höhere Verweilzeiten</td>
</tr>
<tr>
<td>geringere Prozessenergiebedarf</td>
<td>kontinuierliche Gasproduktion nur mit mehreren phasenversetzt arbeitenden Fermentern möglich</td>
</tr>
<tr>
<td>modular erweiterbare Anlagen</td>
<td>hoher Impfmaterialbedarf</td>
</tr>
<tr>
<td>kein Anmaischen von trocknen Materialien</td>
<td>Explosionsgefahr beim Be- und Entladen</td>
</tr>
<tr>
<td>notwendig</td>
<td>Stand der Technik noch nicht ausgereift</td>
</tr>
<tr>
<td>geringere Anfälligkeit gegen Störstoffe</td>
<td></td>
</tr>
<tr>
<td>- einfachere Lagerung von Gärresten</td>
<td></td>
</tr>
</tbody>
</table>

Quelle: [25]
3 Bewertung und Vergleich verschiedener Nutzungswege

\[E_{\text{Wärme}} = \frac{Q_{\text{Wärme}}}{T_{\text{Wärme}}} \cdot T_{\text{U}} \]

(GL. 2)

3.1 Konversionsverfahren

3.1.1 Bereitstellung flüssiger Gebrauchsenergieträger

Tabelle 4: Eigenschaften biogener und fossiler Kraftstoffe

<table>
<thead>
<tr>
<th></th>
<th>Diesel C₁₀bisC₂₀</th>
<th>Benzin C₆bisC₁₂</th>
<th>Rapsöl C₁₆bisC₁₈</th>
<th>Biodiesel C₁₀bisC₁₂</th>
<th>Ethanol C₂H₅OH</th>
<th>Pyrolyseöl l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heizwert in MJ/kg</td>
<td>42,7</td>
<td>42,7</td>
<td>36,7</td>
<td>37,1</td>
<td>26,8</td>
<td>16-19</td>
</tr>
<tr>
<td>Dichte bei 15°C in kg/l</td>
<td>0,83–0,85</td>
<td>0,794</td>
<td>0,9–0,93</td>
<td>0,875–0,9</td>
<td>0,72–0,775</td>
<td>1,1–1,3</td>
</tr>
<tr>
<td>Viskosität bei 40°C in mm²/s</td>
<td>2,5–3,5</td>
<td>>38</td>
<td>3,5–5</td>
<td>1,19</td>
<td>13–80*</td>
<td></td>
</tr>
<tr>
<td>Flammpunkt in °C</td>
<td>>55</td>
<td>–20</td>
<td>>220</td>
<td>>100</td>
<td>12</td>
<td>45–100</td>
</tr>
</tbody>
</table>

*bei 50°C

Quelle: [19]

Physikalisch-chemische Konversionsverfahren

Erzeugungsquellen: [19]

Abbildung 20: Exergieflussbild zum kleintechnischen Fertigpressen
Biochemische Konversionsverfahren

![Abbildung 21: Exergieflussbild zur alkoholischen Vergärung von Zuckerrüben](image)

Thermochemische Konversionsverfahren

Über den Weg der thermochemischen Vergasung und Bereitstellung eines Synthesegases kann zum Beispiel über die Fischer-Tropsch-Synthese auch aus lignosehaltigen Biomassen Kraftstoff gewonnen werden. Hierbei müssen jedoch hohe Reinheitsanforderungen an das Gas erfüllt werden, die mit hohen finanziellen Aufwendungen verbunden sind. Obwohl der exergetische Wirkungsgrad von 50% die Technologie viel versprechend darstellt, ist momentan ein wirtschaftlicher Betrieb nur in Großanlagen möglich.

![Abbildung 22: Exergieflussbild eines BTL-Verfahren](image)
Ein weiterer thermochemischer Prozess zur Bereitstellung flüssiger Gebrauchsenergieträger ist die Pyrolyse. Hier kann durch Einflussnahme der Prozessparameter die Ausbeute an Öl und Koks gesteuert werden. So können Schwankungen in Qualität und Menge der Produkte auftreten. Die Literaturangaben schwanken für die möglichen Ölausbeuten stark bis hin zu 75%. Für die exergetische Betrachtung wurde von mittleren Werten ausgegangen, so dass sich ein Wirkungsgrad von 53% ergibt. Das so gewonnene Öl muss jedoch vor der Verwendung als Kraftstoff technisch aufwendig aufbereitet werden.

Abbildung 23: Exergieflussbild zur Pyrolyse

Bei einem Vergleich der Verfahren zur Bereitstellung flüssiger Energieträger untereinander muss beachtet werden, dass im unterschiedlichen Umfang energiereiche Nebenprodukte anfallen, die einer weiteren Nutzung zugeführt werden können. Das gilt besonders für den physikalisch-chemischen Weg, die Pyrolyse und mit Abstrichen für die Ethanolherstellung.

3.1.2 Bereitstellung gasförmiger Gebrauchsenergieträger

Die Bereitstellung gasförmiger Gebrauchsenergieträger kann auf dem Weg der thermochemischen Vergasung oder durch die Vergärung von Biomasse zu Methangas erfolgen.

Die Wahl des Gärverfahrens, das heißt ob eine trockene oder nasse Fermentation erfolgt, hat, wie die Wahl des verwendeten Substrates, großen Einfluss auf die Effektivität einer solchen Konversionsanlage. So wird bei der trockenen Fermentation von Maisilage 0,46 m³Biogas/kg oTS gewonnen und beim nassen Verfahren hingegen 0,72 m³Biogas/kg oTS. Wird zum Beispiel Rindermist vergoren, so ist der Unterschied zwischen den Biogasausbeuten geringer beim trocknen Verfahren liegt diese bei rund 0,2 und beim nassen Verfahren bei 0,24 m³/kg oTS [14]. Wobei die
Anlagengröße weiteren Einfluss auf den Wirkungsgrad hat. Bei durchschnittlichen Annahmen kann ein exergetischer Wirkungsgrad von rund 73% ermittelt werden.

Abbildung 24: Exergieflussbild Methangärung

Bei der thermochemischen Vergasung haben ebenfalls Anlagengröße, Wahl des Einsatzmaterials und Verfahrenstechnik entscheidenden Einfluss auf den Biomassenutzungsgrad. So sind bei Materialien mit hohem Wasser- und Aschegehalt nur geringe Wirkungsgrade zu erwarten. Bei den Technologien zur Vergasung können ebenfalls große Unterschiede auftreten, so haben einfache Festbettreaktoren in der Regel einen Wirkungsgrad um 50% und mehrstufige Verfahren oder großtechnische Wirbelschichtvergaser können Wirkungsgrade von 75% erzielen.

Abbildung 25: Exergieflussbild zur thermochemischen Vergasung

Tabelle 5: Eigenschaften gasförmiger Gebrauchsenergieträger

<table>
<thead>
<tr>
<th></th>
<th>Biogas</th>
<th>Schwachgas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kohlenmonoxid in Vol.%</td>
<td>0</td>
<td>16,5</td>
</tr>
<tr>
<td>Kohlendioxid in Vol.%</td>
<td>35</td>
<td>13,5</td>
</tr>
<tr>
<td>Methan in Vol.%</td>
<td>63</td>
<td>4</td>
</tr>
<tr>
<td>Wasserstoff in Vol.%</td>
<td>< 1</td>
<td>12,5</td>
</tr>
<tr>
<td>Sauerstoff in Vol.%</td>
<td>< 2</td>
<td>0</td>
</tr>
<tr>
<td>Stickstoff in Vol.%</td>
<td>< 2</td>
<td>52</td>
</tr>
<tr>
<td>Heizwert in MJ/Nm³</td>
<td>22,5</td>
<td>4,5</td>
</tr>
</tbody>
</table>

3.1.3 Bereitstellung fester Gebrauchsenergieträger

Der exergetische Wirkungsgrad bezogen auf die Koks gewinnung liegt bei herkömmlichen Pyrolyseverfahren bei 41%. Eine Steigerung bis auf rund 47% ist bei modernen Techniken, die auf Koksproduktion abzielen, möglich. Auf Grund der geringen Bedeutung der Gewinnung von Koks ist in diesem Zusammenhang das Pyrolyseverfahren energetisch nur sinnvoll anzuwenden, wenn es zur kombinierten Gewinnung von festen und flüssigen Energieträgern eingesetzt wird. In diesem Fall kann ein exergetischer Wirkungsgrad von 94% realisiert werden.

Abbildung 26: Exergieflussbild zur Bereitstellung des Pyrolyseprozesses
3.2 Verfahren zur Bereitstellung von Endenergien

Wird flüssiger Kraftstoff für den Betrieb von Kraftfahrzeugen verwendet, so werden nur geringe Wirkungsgrade erreicht, da die Motoren vor allem im Teillastbereich betrieben werden und damit geringere Effektivität aufweisen. Findet er hingegen Anwendung in einem stationären BHKW zur Kraft-Wärme-Kopplung so werden exergetische Wirkungsgrade, bei einer Wärmenutzungstemperatur von 70°C, von rund 45% erreicht.

\[\eta_{ex} = 45\% \]

Abbildung 27: Einsatz von biogenen Kraftstoffen in BHKW

Entsprechend GL.2 hat das Temperaturnutzungsniveau der Prozessabwärme einen entscheidenden Einfluss. Allen Berechnungen wurde eine Temperatur für Heizzwecke von 70°C zu Grunde gelegt.

Abbildung 28: Exergieflussbild Stirlingmotor

Bisher sind vor allem Biomasseheizkraftwerke realisiert, die exergetische Wirkungsgrade von rund 40% erzielen.

Die Betrachtung von Mikrogasturbinen in kleineren dezentralen Anlagen wird nicht mit analysiert, da diese auf Grund des Entwicklungsstadiums kaum Anwendung in der Praxis finden. Es ist hierbei mit wesentlich geringeren Wirkungsgraden im Vergleich zu den 45% bei großtechnischen Turbinen bzw. im Vergleich zum BHKW zu rechnen.
Zur reinen Wärmebereitstellung steht natürlich der einfache Verbrennungsprozess zur Verfügung. In Abhängigkeit des hier eingesetzten Gebrauchsenergieträgers, der Anlagengröße und der Verbrennungstechnik ergeben sich unterschiedliche Nutzungsgrade. Zum Vergleich wird ein mittlerer energetischer Wirkungsgrad von 90% angenommen, so dass der exergetische Wirkungsgrad bei 70°C Nutzungstemperatur 18% beträgt. Hier hat die bereits genannte Problematik des Heizwärmeniveaus den größten Einfluss. Erfolgt die Nutzung als Prozesswärme bei einer Temperatur von 120°C, so erhöht sich der Wirkungsgrad um 9,5% auf insgesamt 27,5%. Wird eine dezentrale Wärmeversorgung bei 50°C angestrebt sinkt der Wirkungsgrad auf rund 14% ab.

Abbildung 31: Exergetische Analyse eines Heizkessels

3.3 Darstellung gesamtheitlicher Nutzungswege

Um die vorangegangenen Betrachtungen hinsichtlich effektiver Nutzungswege zu vergleichen werden in Tabelle 6 und 7 die exergetischen Wirkungsgrade der einzelnen Prozesse nochmals zusammenfassend dargestellt. Zur Ermittlung der Effektivität möglicher Gesamtnutzungswege sind die Wirkungsgrade der Einzelprozesse entsprechend GL.3 miteinander zu multiplizieren.

\[
\eta_{\text{System}} = \eta_{\text{Konversion}} \times \eta_{\text{Nutzung}}
\]
(GL. 3)

| Tabelle 6: Übersicht exergetische Wirkungsgrade der Konversionsverfahren |
|---|------|------|------|
| Methangärung | 72% | flüssige | gasförmige |
| alkoholische Gärung (Zuckerrüben) | 55% | | |
| Vergasung | 70% | | |
| Vergasung + Synthese | 50% | | |
| Pyrolyse | 41% | 53% | |
| kleintechnisches Fertigpressen (Raps) | 45% | | |
| großtechnische Pflanzenölgewinnung (Raps) | 53% | | |
Tabelle 7: Übersicht exergetische Wirkungsgrade der Nutzungstechnologien

<table>
<thead>
<tr>
<th>Speichergattung</th>
<th>feste Gebrauchsenergieträger</th>
<th>flüssige Gebrauchsenergieträger</th>
<th>Gasförmige Gebrauchsenergieträger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heizkessel</td>
<td>18%</td>
<td>18%</td>
<td>18%</td>
</tr>
<tr>
<td>BHKW</td>
<td>45%</td>
<td>45%</td>
<td></td>
</tr>
<tr>
<td>Stirlingmotor</td>
<td>19,4%</td>
<td>19,4%</td>
<td>19,4%</td>
</tr>
<tr>
<td>DKP</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>Gasturbine</td>
<td>45%</td>
<td>45%</td>
<td></td>
</tr>
<tr>
<td>Brennstoffzelle</td>
<td>59%</td>
<td>59%</td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 32: Exergetischer Wirkungsgrad bei der Bereitstellung flüssiger Gebrauchsenergieträger

Kraftstoffe auf 5,75% zu erhöhen, reichen die verfügbaren Einsatzmengen jedoch nicht aus, so dass die Gewinnung synthetischer Kraftstoffe über thermochemische Prozesse notwendig sein wird [17]. Hierfür sind hohe Aufwendungen zur Gasaufbereitung bei der Vergasung und zur Ölaufbereitung bei der Pyrolyse notwendig. Die exergetischen Aufwendungen für die Ölaufbereitung sind gegenwärtig nur schwer darstellbar.

Bei der alkoholischen Vergärung ist wie in Abb.21 zu sehen ist, ein Anteil von 34% der Eingangsenergie in den Reststoffen enthalten. Mit Hilfe einer Methangärung und anschließender motorischer Verbrennung könnten diese zur Bereitstellung von Endenergien genutzt werden. Damit kann der Wirkungsgrad um weitere 11% auf 66% Gesamtwirkungsgrad der verwendeten Biomasse gesteigert werden.
Abbildung 34: Wirkungsgrade der Konversionsverfahren unter Berücksichtigung der Reststoffverwertung

Durch die erheblichen Wirkungsgradsteigerungen bis hin zu 25% sollte eine energetische Weiterverwertung von Reststoffen angestrebt werden, um somit das vorhandene Biomassepotential optimal zu nutzen und die Substitution fossiler Brennstoffe zu erhöhen.
4 Spezifikation der Gebrauchs- und Nutzenergienträger

4.1 Verfügbarkeit und Versorgungsfähigkeit von Bioenergieträgern in Deutschland

Abbildung 35: Energiebereitstellung und Potential der erneuerbaren Energien
Quelle: [2], [1]

4.2 Verfügbarkeit und Versorgungsfähigkeit von Bioenergieträgern in Brandenburg

Abbildung 36: Einflussparameter auf das lokale Biomassepotential
Quelle: [3],[4]
Tabelle 8: Anbau nachwachsender Rohstoffe im Land Brandenburg

<table>
<thead>
<tr>
<th>Kultur</th>
<th>1998</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triticale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ertrag in dt/ha</td>
<td>50,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roggen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ertrag in dt/ha</td>
<td>43,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winterweizen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ertrag in dt/ha</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sommerweizen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ertrag in dt/ha</td>
<td>41,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Körnermais + CCM</td>
<td>72,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winterraps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ertrag in dt/ha</td>
<td>29,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sonnenblumenkerne</td>
<td>19,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zuckerrüben</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ertrag in dt/ha</td>
<td>464,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kartoffeln</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ertrag in dt/ha</td>
<td>287,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 37: Durchschnittliche Erträge in Brandenburg und Deutschland

Neben nutzbaren Wald- und Ackerfläche hat die Struktur der Tierhaltung ebenfalls Einfluss auf das lokal vorhandene Biomassepotential. Dies wird in Abb.38 für die brandenburgischen Landkreise Barnim und Uckermark deutlich. Bei einem durchschnittlichen Pro-Kopf-Energieverbrauch können im Landkreis Barnim ca. 4,8% und in der Uckermark 17,8% des Primärenergiebedarfes durch energetische Nutzung von Biomasse gedeckt werden. Bisher liegt der Beitrag erneuerbarer Energien in beiden Regionen unter 2% [19].
4.3 Speicherfähigkeit der Bioenergieträger

<table>
<thead>
<tr>
<th>Tabelle 9: Lagereigenschaften von Energiepflanzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wassergehalt in %</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Frisch geerntetes Scheitholz</td>
</tr>
<tr>
<td>frisch geerntete Holzhackschnitzel</td>
</tr>
<tr>
<td>Nadelholz Meterscheite</td>
</tr>
<tr>
<td>Nadelholz Hackschnitzel</td>
</tr>
<tr>
<td>Holzpellets</td>
</tr>
<tr>
<td>Stroh Rundballen</td>
</tr>
<tr>
<td>Stroh Häckselgut</td>
</tr>
<tr>
<td>Getreide-GP Rundballen</td>
</tr>
<tr>
<td>Zuckerrübe</td>
</tr>
<tr>
<td>Grünschnitt</td>
</tr>
</tbody>
</table>

Die Speicherfähigkeit ist in Abhängigkeit der Stoffeigenschaften und Lagerbedingung für die einzelnen Biomassen stark unterschiedlich. Grundsätzlich finden bei jeder Lagerung von organischen Substanzen Abbauvorgänge statt. Diese erfolgen im unterschiedlichen Maße abhängig von...
Temperatur, Wassergehalt der Biomasse und Lagerdauer. Neben der Reduzierung der Trockenmasse und damit des Energiegehaltes ist unter Umständen auch die Problematik der Selbstentzündung insbesondere bei Stroh oder Hackschnitzel zu berücksichtigen.

Die Lagerung von Holz ist in Form von Stammholz einfacher und kostengünstiger, da hier geringere Lagerfläche benötigt werden, keine Gefahr der Selbstentzündung besteht und der Substratabbau mit 1–3% pro Jahr geringer als bei der Lagerung von Hackgut ist [4]. Die Aufarbeitung zu Pellets verbessert die Lagerfähigkeit des Brennstoffes erheblich ist aber auch mit zusätzlichen energetischen Aufwendungen und Investitionen verbunden.

Auf Grund der in der Landwirtschaft bereits vorhandenen Technik sollte Stroh zu Ballen gepresst werden, da die Schüttdichte doppelt so hoch ist, damit die Lagerflächen kleiner sind und ein besseres Handling gegeben ist. Bei der Speicherung von Ganzpflanzen bietet sich ebenfalls die Pressung zu Ballen an. Dabei gehen jedoch ca. 10% der Getreidekörner verloren und können nicht energetisch genutzt werden [5].

Bei diesen relativ trockenen lignose- und cellulosehaltigen Biomassen sind die Substratverluste nicht so ausschlaggebend wie bei zuckerhaltigen Rohstoffen. Der wertschöpfende Gehalt an Zucker wird bei der Lagerung von der Pflanze schnell zu Kohlendioxid veratmet, so dass bei geernteten Zuckerrüben der Zuckergehalt pro Tag um 200g/t absinken kann [4]. Aus diesem Grund werden Zuckerrüben im Vergleich zu allen anderen energetisch nutzbaren Materialien ausschließlich saisonal zur energetischen Nutzung zur Verfügung stehen.

4.4 Transport- und Speicherfähigkeit der Gebrauchsenergien

4.4.1 Flüssige Gebrauchskraftstoffträger

Kraftstoffe aus der biochemischen und physikalisch-chemischen Umwandlung sowie synthetische Kraftstoffe aus der Fischer-Tropsch-Synthese können wie herkömmliche Kraftstoffe in Tanks gelagert und transportiert werden.

Ethanol wird bisher den üblichen Ottokraftstoff beigemischt und über das normale Tankstellensystem zur Verfügung gestellt.

Biodiesel ist bisher der einzig flächendeckende verfügbare regenerative Kraftstoff und wird an ca. 1800 öffentlichen Tankstellen angeboten [7].

Der bei der Methanolsynthese erzeugte flüssige Kraftstoff Methanol kann auf Grund seiner Giftigkeit, seines Dampfdruckes und der korrosiven Eigenschaften nicht über die herkömmlichen Versorgungsstrukturen vertrieben werden. Hierfür müssen spezielle Lagertanks und Transportfahrzeuge verwendet werden.

Prinzipiell stellen flüssige Kraftstoffe einen gut lager- und transportfähigen Energieträger dar, der flexibel einsetzbar ist und nicht am Entstehungsort verwendet werden muss.
4.4.2 Feste Gebrauchsenergieträger

Prinzipiell ist also der Transport fester Energieträger vom Gestehungsort zum Einsatzort unproblematisch. Auf Grund der zumeist geringen Energiedichte können lange Transportwege und damit entstehende Kosten allerdings entscheidenden Einfluss auf die Wirtschaftlichkeit der Biomassenutzung haben.

4.4.3 Gasförmige Gebrauchsenergieträger

Das bei der Methangärung erzeugte Biogas hat nur etwa die Hälfte des Energiegehaltes von Erdgas und das bei der Vergasung mit Luft erzeugte Schwachgas kann gar nur ein zehntel des Energiegehaltes besitzen. Auf Grund dieser geringen Energiedichte ist eine langfristige Speicherung und der Transport im Vergleich zu flüssigen und festen Gebrauchsenergieträgern durch die notwendigen hohen finanziellen Aufwendungen kaum darstellbar.

Das bei der Vergasung entstehende Schwachgas erfordert zur Speicherung auf Grund des noch niedrigeren Energiegehaltes von ca. 1,5 kWh/m³ noch größere Speichervolumen und damit verbundene finanzielle Aufwendungen. Daher findet in diesem Fall nur eine Speicherung in der Vergasungsanlage statt, um eventuelle Schwankungen in der Gasbereitstellung für wenige Minuten überbrücken zu können.
4.5 Speicherfähigkeit und Einspeisemöglichkeiten von Endenergien

Tabelle 10: Vergütung für Stromgewinnung aus Biomasse in Cent/kWh

<table>
<thead>
<tr>
<th></th>
<th>bis 150 kWel</th>
<th>bis 500 kWel</th>
<th>bis 5 MWel</th>
<th>über 5 MWel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundvergütung</td>
<td>11,5</td>
<td>9,9</td>
<td>8,9</td>
<td>8,4</td>
</tr>
<tr>
<td>NawaRo-Bonus</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>KWK-Bonus</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Technologie-Bonus</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>

Quelle: [11]

Ausgehend von einer größenabhängigen Grundvergütung, die für das Jahr der Inbetriebnahme festgesetzt wird und ausgehend von 2005 jährlich um 1,5% sinkt, können weitere Zahlungen erfolgen.

Tabelle I1: Einsatzstoffe und deren Berechtigung zum Bezug des NawaRo-Bonus

<table>
<thead>
<tr>
<th>Positiv</th>
<th>Negativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflanzen und Pflanzenbestandteile</td>
<td>Ganzpflanzen, die keine weitere Bestimmung als die Verwertung in einer Biomasseanlage haben
Ackerfutterpflanzen, Getreide, Ölzpflanzen, Rüben, Rübenblätter, Stroh, Körner, Kartoffelkraut, Knollen</td>
</tr>
<tr>
<td>Schlempe</td>
<td>aus landwirtschaftlichen Brennereien</td>
</tr>
<tr>
<td>Kot und Harn</td>
<td>von Nutztieren
(Rinder, Schweine, Geflügel…))</td>
</tr>
</tbody>
</table>

Quelle: [11], [12]

4.6 Charakterisierung des ländlichen Nutzenergiebedarfs

In der Landwirtschaft werden rund 2% des Primärenergiebedarfs Deutschlands also rund 286 PJ/a verbraucht. Wie sich dies in den einzelnen landwirtschaftlichen Betrieben darstellt, hängt sowohl von der bewirtschafteten Ackerfläche als auch davon ab, ob und welche Art der Tierhaltung erfolgt.

Abbildung 39: Kraftstoffverbrauch (Anbauverfahren: Pflug, Saatbettkombination)
Quelle: [20]

Die notwendigen Energieaufwendungen für Sozial- und Verwaltungsgebäude sowie der Warmwasseraufbereitung unterliegt entsprechend den örtlichen Gegebenheiten großen Schwankungen. Überschlägig kann dieser Bedarf in Abhängigkeit der Betriebsgröße abgeschätzt werden. Entsprechend der „Betriebsplanung für Landwirtschaft“ [20] kann der Energiebedarf bei Unternehmen mit Tierbesatz und einem angenommenen Energiepreis von 0,15 €/kWh bei einer Ackerfläche von rund 500 ha von ca. 20 kWh/(ha*a) und bei größeren Betrieben mit 1.000 ha bewirtschafteter Fläche von rund 16 kWh/(ha*a) ermittelt werden.

Im Land Brandenburg werden rund 50% der Ackerfläche von nur 5,6% der landwirtschaftlichen Betriebe bewirtschaftet [23]. Für einen derartigen Großbetrieb mit einer Ackerfläche von 1000 ha, wie sie vor allem in Nord- und Osteuropa vorkommen, soll nachfolgend eine Abschätzung des jährlichen Energiebedarfes erfolgen. Um die Tierproduktion mit darzustellen wird von einem Viehbestand von 1000 Milchkühen ausgegangen. Hierfür fallen relativ hohe Energiekosten insbesondere für Milchkühlung im Bereich von 12,5 bis 25 € je Tier und Jahr an. Unter der Annahme eines Preises von 0,15 €/kWh ergeben sich Energieverbräuche von 83 bis 167 kWh je Tier und Jahr. Für 1000 Milchkühe würde sich demnach ein durchschnittlicher Jahresverbrauch von 125.000 kWh ergeben. Für die Energieversorgung der Gebäude werden bei dieser Betriebsgröße weitere 16.000 kWh benötigt, so dass der Gesamtenergiebedarf 141.000 kWh pro Jahr beträgt. Der Bedarf an flüssigen Kraftstoffen kann mit einem mittleren Dieselverbrauch von 95 l/ha auf rund 95.000 Liter pro Jahr bestimmt werden. Bei einem Energieertrag in Brandenburg von 77.645 MJ/(ha*a) für Raps sind rund 9,6% der Anbaufläche für die Bereitstellung des Eigenbedarfs an flüssigen Kraftstoffen notwendig. Dabei wurde eine kleintechnische Fertigpresse zur Gewinnung von Rapsöl zu Grunde gelegt.
Abbildung 41: Energieertrag bzw. Bedarf zur Bereitstellung flüssiger Kraftstoffe

Literaturverzeichnis

1 Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit: Erneuerbare Energien – Innovationen für die Zukunft, Berlin, Mai 2004

3 Staiß, F.: Jahrbuch Erneuerbarer Energien 2000, Bieberstein-Fachbuchverlag, Radebeul, 2000

7 Union zur Förderung von Oel- und Proteinpflanzen e.V.: Ufob Bericht 2003/2004, 2004

9 Fachagentur Nachwachsende Rohstoffe e.V.: Leitfaden Bioenergie

11 Bayrische Landesanstalt für Landwirtschaft, Institut für Agrarökonomie: Stromvergütung für Biogas nach dem neuen EEG, Mai 2004

Biomasse-Vergasung – Der Königsweg für eine effiziente Strom- und Kraftstoffbereitstellung?, Leipzig, 01./02. Oktober 2003

19 Forschungsbericht des ATB: Studie zur Errichtung einer Pilotanlage zur Trockenvergärung oder Thermolyse landwirtschaftlicher, forstwirtschaftlicher und gewerblicher Biomasse zur Energiegewinnung als Beispielobjekt für die Landkreise Branim und Uckermark, Potsdam-Bornim, Dezember 2003

24 Ministerium für Landwirtschaft, Umweltschutz und Raumordnung des Land Brandenburg: Agrarbericht 2004 zur Land- und Ernährungswirtschaft des Land Brandenburg

27 http://www.fnr.de